Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография примеры разделений

    Молекулярная адсорбционная хроматография. Этот вид хроматографии имеет большое значение для аналитического и технологического разделения смесей органических веществ сложного состава, например растительных пигментов, витаминов, антибиотиков, аминокислот. Известны также примеры использования метода молекулярной адсорбционной хроматографии для разделения редкоземельных и радиоактивных элементов, хотя для этих целей чаще применяют методы ионообменной хроматографии. [c.69]


Рис. 15.3-3. Пример разделения двух флуоресцентных красителей, полученный с использованием жидкостной хроматографии, реализованной в системе на микрочипе. Рис. 15.3-3. Пример разделения <a href="/info/1696521">двух</a> <a href="/info/585190">флуоресцентных красителей</a>, полученный с <a href="/info/1707942">использованием жидкостной</a> хроматографии, реализованной в системе на микрочипе.
    С ПОМОЩЬЮ бумажной, колоночной, тонкослойной [83а], газовой и жидкостной хроматографии [84]. Например, рацемическую миндальную кислоту удалось разделить почти полностью колоночной хроматографией на крахмале [85]. Известно много примеров разделения газовой и жидкостной хроматографией на колонках с хиральными абсорбентами [86]. Такие колонки теперь выпускаются промышленностью, причем можно подобрать колонку для разделения энантиомеров определенных типов соединений [86а]. [c.160]

    Рассмотренные три способа не могут дать удовлетворительного результата, если ионы очень мало различаются по свойствам и поглощаются ионитом почти одинаково. В этом случае эффективного разделения можно достичь, применяя метод ионообменной хроматографии с комплексообразователем, дающим с разделяемыми ионами комплексные соединения различной прочности. -Рассмотрим суть этого метода на примере разделения ионов редкоземельных элементов с применением лимонной кислоты в качестве комплексообразователя. Разделяемым катионам дают поглотиться в верхней части катионитовой колонки (сульфокатионит в ЫН4- или Н-формах). Затем через колонку пропускают растворы нитратного буферного раствора (лимонная кислота + гидроксид аммония), имеющие разные pH. При этом поглощаемые катионы образуют нитратные комплексные отрицательно заряженные анионы, прочность которых (и, следовательно, вымывание из катионитовой колонки) определяется pH и концентрацией цитратного буферного раствора. Так создаются условия для дифференциального вымывания поглощенных катионов. Чем прочнее образующийся комплексный анион, тем легче вымывается катион из колонки. [c.690]

    Примеры применения газо-адсорбционной хроматографии для разделения смесей и контроля производства. Хроматермография и теплодинамический метод. Концентрирование примесей. [c.297]

    В то же время в практике аналитической хроматографии примеры разделения таких систем встречаются достаточно часто. [c.155]


    Можно было бы упомянуть многие другие примеры разделения смесей близких по свойствам компонентов, но рассматриваемая область развивается столь быстро, что лучше рекомендовать читателю обратиться к текущей литературе за примерами применения газожидкостной хроматографии в любой конкретной области. [c.553]

    Цель работы ознакомление с новым вариантом распределительной хроматографии с применением высаливания на примере разделения галогенатов натрия. [c.107]

    М. С. Цвет в работе, опубликованной в 1903 г., описал на примере разделения природных пигментов метод адсорбционного хроматографического анализа, основы которого он заложил еще в своей магистерской диссертации в 1901 г. Им же введен и термин хроматография . [c.46]

    На рис. 464 приведен пример разделения при помощи газо-жидкостной хроматографии смеси ароматических углеводородов, на рис. 465 — смеси фенолов. На рис. 466 изображена хроматограмма углеводородов С7, разделенных на капиллярной колонке. [c.521]

    Основные элементы хроматографического процесса рассмотрим на примере разделения бинарной смеси в условиях колоночной жидкостной адсорбционной хроматографии. Представим себе трубку, заполненную пористым адсорбентом (колонку), через которую непрерывно течет растворитель (рис. 1.1). Адсорбент (сорбент, наполнитель колонки) удерживается в колонке фильтрами, он неподвижен и потому часто называется неподвижной фазой. Растворитель, перемещающийся относительно сорбента, называют также подвижной фазой (и в некоторых случаях — элюентом). Введем в верхнюю часть колонки по одной молекуле соединений — сорбатов, обозначаемых далее X и У. При движении вдоль колонки эти молекулы будут диффундировать внутрь пор сорбента и в результате межмолеку-лярных взаимодействий того или иного типа адсорбироваться на поверхности неподвижной фазы. Доля времени, в течение которой молекулы находятся в адсорбированном состоянии, определяется силой межмолекулярного взаимодействия сорбатов X, У с сорбентом. При очень слабой адсорбции молекулы почти все время проводят в растворе подвижной фазы и поэтому перемещаются вниз по колонке со скоростью, лишь незначительно уступающей скорости движения подвижной фазы. Наоборот, при очень сильной адсорбции молекулы X и У почти не отрываются от поверхности и скорость их перемещения вниз по колонке крайне незначительна. [c.11]

Рис. 38 Пример разделения смеси веществ по варианту восходящей двухмерной хроматографии. Рис. 38 Пример разделения <a href="/info/308564">смеси веществ</a> по варианту восходящей двухмерной хроматографии.
    Для фракционирования часто используют гель-проникающую хроматографию. На рис. 6.10 приведен пример разделения ЛПК, [c.137]

Таблица 16.2. Типичные примеры разделений методом распределительной колоночной хроматографии Таблица 16.2. <a href="/info/1621024">Типичные примеры разделений</a> <a href="/info/279707">методом распределительной</a> колоночной хроматографии
    Огромные возможности метода хроматографии в сухих колонках были продемонстрированы на примере разделения с помощью этого метода на силикагеле изомерных соединений А и Б. [c.438]

    В последние годы существенно новую информацию о составе радикальных аддуктов в сложных системах (два и более аддукта) дает использование метода высокоэффективной жидкость-жид-костной хроматографии. Примеры использования такого метода разделения нитроксильных радикалов можно найти в работах, выполненных в области радиационной биологии и медицины (см. [10]). [c.160]

    Различие величин Rf галлия и некоторых сопутствующих ему элементов особенно в присутствии комплексообразующих агентов [1064] делает возможным разделение их при помощи хроматографии на бумаге. В табл. 17 даны примеры разделений некоторых смесей, содержащих галлий, а в табл. 18 — значения R для галлия, полученные для ряда растворителей. [c.65]

    ПРИМЕРЫ РАЗДЕЛЕНИЯ МЕТОДОМ ГАЗО-ЖИДКОСТНОЙ ХРОМАТОГРАФИИ [c.149]

    ПРИМЕРЫ РАЗДЕЛЕНИЯ АКТИНОИДОВ МЕТОДОМ ЭКСТРАКЦИОННОЙ ХРОМАТОГРАФИИ [c.265]

    Разделение бензола, нафталина и фенантрена методом жидкостной хроматографии — типичный пример разделения высококипящих органических веществ, трудно разделяемых методом газовой хроматографии. Разделение методом ВЭЖХ проходит за 5 мин, время удерживания возрастает с увеличением числа ароматических колец. Ароматические вещества хорошо детектируются при А, = 254 нм. [c.209]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]


    Еще в 1966 г. Бернарди и соавторы [Bernardi et al., 1966] продемонстрировали возможность использования хроматографии на оксиапатите для очистки ферментов иа примере разделения различных нуклеаз селезенки (рис. 102). Элюцию вели линейным градиентом концентрации фосфатного буфера (0,05—0,5 М), pH 6,8. [c.233]

    По сравнению с хроматографией на бумаге разделение веществ при помощи электрофореза происходит гораздо быстрее (время разделения при высоковольтном электрофорезе составляет от 1 до 2 час). Подбором соответствующего pH при помощи буфера можно добиться разделения даже очень близких веществ. На рис. 486 показаны примеры разделения смеси аминокислот и пептидов на приборах со средним и высоким напря кением. [c.541]

    Основной способ получевия хроматограмм в колоночной хроматографии — элюентная хроматография. В этом варианте проба, растворенная в подвижной фазе, вводится в верхнюю часть колонки. Затем с использованием подвижной фазы осуществляется элюирсюание разделяемых веществ до тех пор, пока они не будут детект1фОваиы в конце колонки. Рис. 5.1-1 объясняет принцип элю-ентной хроматоп>афии на примере разделения веществ А и В. [c.232]

    Основные элементы хроматографического процесса рассмотрим па примере разделения бинарной смеси в условиях колоночной жидкостной адсорбционной хроматографии. Представим себе трубку, занолненную простым адсорбентом (колонку), через которую непрерывно течет растворитель (рис. 1.) [c.2]

    Создан экспрессный ультрачувствигельный вгфиант ТСХ, названный микротонкослойной хроматографией. Его основные преимущества — уменьшение времени анализа, минимальное размывание П5гтен, максимальная чувствительность — обусловлены использованием сорбентов зернением 2—5 мкм, снижением пробега элюента до 5 см, использованием пластинок размером 6x6 см с толщиной слоя 150—200 мкм. Примеры разделения катионов этим методом см. табл. 8.6. Этим методом можно определять следовые количества токсичных элементов в воде, отходах, а потому он с успехом используется при анализе объектов окружающей среды. [c.339]

    Поэтому до настоящего времени не нашли широкого распространения в области полисахаридов такие виды хроматографии, как распределительная и адсорбционная (отдельные примеры см." ). Более успешным оказалось применение ионообменной хроматографии для разделения кислых и даже нейтральных полисахаридов. Ионообменниками служат обы.ч,но аниониты, полученные модификацией целлюлозы, например ДЭАЭ-целлюлоза. Для элюирования полисахаридов с колонок используют растворы солей или буферные растворы разной концентрации прочно удерживаемые полисахариды элюируют разбавленными растворами щелочей. Таким споссбом легко удается отделить кислые полисахариды от нейтральных, например, пектиновую кислоту от сопутствующего ара-бинана или сульфированные полисахариды водорослей от крахмалоподобных примесей в ряде случаев при таком способе разделения удается освободиться от примесей белка. Нейтральные полисахариды можно разделить, применив ДЭ.ЛЭ-целлюлозу в боратной форме, при вымывании боратным буфером . Описано также успешное применение ЭКТЕОЛА- [c.486]

    В этом направлении большой интерес представляют работы Зи, Блемера, Рийндерса, Ван Кревелена [273, 274], использовавших в качестве флюидов пентап, диэтиловый эфир, изопропанол при давлении 30—50 атм и температуре 250° С вместо газа-носителя низкого давления. В основе метода флюидной хроматографии лежит принцип смещения адсорбционного равновесия, которое определяется двумя факторами молекулярным взаимодействием в плотной газовой фазе и модифицированием поверхности адсорбента молекулами адсорбированного газа-носителя — флюида. Метод позволяет при температуре 200—250° С разделять производные алкилбензолов с числом атомов углерода 36 (температура кипения выше 500° С) за короткое время одновременно улучшается симметрия пиков. В работе [273] приведены примеры разделения антиоксидантов, алкалоидов, хинонов и эпоксисмол (рис, 52, 53). [c.155]

    В табл. 8.37 перечислены важные промышленные процессы разделения, в которых успешно применяются молекулярные сита [195]. Кроме того, в литературе описаны Л100гие сотни примеров разделения, осуществленных в лабораториях. Цеолиты получили широкое распространение в качестве адсорбентов в газовой хроматографии, и в литературе можно найти многочисленные данные о применении цеолитов для хроматографического анализа [196— 203]. [c.713]

    Различные величины Rf ионов ртути и других элементов делают возможным разделение их при помощи распределительной хроматографии на бумаге. Для разделения применяют самые раз-нообраэные растворители, но чаще всего растворители, содержащие к-бутанол, содержащий НС1 различной концентрации [99, 538, 903, 904[. В табл. 14 даны примеры разделений смесей, содержащих ртуть, методом распределительной хроматографии на бумаге. [c.63]

    Примером применения адсорбционной хроматографии для разделения органических веществ является разделение смеси цетена, стеарата холестерина и олеиновой кислоты. Смесь этих веществ в петролейном эфире пропускают через колонку с силикагелем и последовательно промывают избытком петролейного эфира, причем в элюат переходит нетен. зятем тпихлопэтяном—в элюат переходит стеарат холестерина н, наконец, промывают эфиром, вымывающим олеиновую кислоту. Таким же путем можно разделить изомеры питроанилина в растворе в петролейном эфире на колонке из гидроокиси кальция. При промывании избытком растворителя на колонке сверху вниз образуются три зоны верхняя ярко-желтая зона п-нитроанилина, средняя желтая—ж-нитро-анилина, нижняя коричневая—о-нитроанилина. Для обнаружения зон органических веществ на адсорбционных колонках широко применяют люминесцентный анализ. Например, если смесь фенола, резорцина, галловой кислоты и флороглюцина с хлоридом [c.535]

    Ароматические и основные аминокислоты на пластинке Фик-сиоц 50 X 8 разделяются при одномерной хроматографии в цитратном буферном растворе pH 5,23 с концентрацией Ыа" 0,35 М (буферный раствор В, табл. 10), который используется в двухколоночной системе аминокислотного анализатора. Типичная хроматография такого разделения представлена на фиг. 49. Колебания pH и концентрации буферного раствора не существенны для фракционирования. Хроматографию проводят при комнатной температуре без предварительного уравновешивания. В камеру наливают слой буферного раствора высотой примерно 1 см. При хроматографии фронт буферного раствора должен подняться на высоту 15 см. Если пластинка не уравновешена, на это уходит около 2 ч. На уравновешенной пластинке (см. буферный раствор для уравновешивания, табл. 10) это происходит за несколько ми-нут. На примере разделения ароматических и основных аминокислот можно оценить Лиз высокую разрешающую спо-Гис обность ионообменной хроматографии в тонком слое по сравнению с соответствующей колоночной техникой. Известно, что на малой колонке в этом же буферном растворе (т. е. 0,35 М Ыа+, pH 5,23) ароматические аминокислоты не отделяются друг от друга. [c.250]

    Важным этапом стало открытие Н. А. Измайловым и М С. Шрайбер метода хроматографии в тонком слое в 1938 г. в Харьковском. химико-фармацевтическом институте. Далее существенным в развитии хроматографии стало открытие Мартином и Сингом в 1940 г. варианта жидкостной распределительной хроматографии на примере разделения ацетильных производных аминокислот на колонке, заполненной силикагелем, насыщенным водой, с использованием хлороформа в качестве растворителя. Тогд же было отмечено, что в качестве подвижной фазы может быть использована не только жидкость, но и газ. Далее эти ученые предложили осуществлять разделение производнцх аминокислот на смоченной водой бумаге с бутанолом в качестве подвижной фазы. Они же осуществили первую двумерную систему разделения. [c.15]

    Целью работы является изучение осадочной хроматографии на примере разделения катионов в виде иодидов. Окись алюминия, которая является носителем, смешанная с иодидом натрия — осадителем, образует осадочно-хроматографирующую смесь. В качестве хроматографируемых растворов можно использовать искусственные смеси солей серебра, висмута, ртути, свинца. Яркоокрашенные осадкиэтих металлов образуют на хроматографической колонке разноцветные зоны. [c.332]

    В настоящей работе рассмотрены возможности применения распределительной хроматографии для относительного концентрирования на примере разделения и аналитическаго определения смеси редкоземельных элементов, ниобия и тантала. [c.361]

    Триведенные примеры свидетельствуют об удивительной селективности комплексообразующих фаз в газовой хроматографии. Многие разделения могут быть проведены только при использовании химически активных фаз этого типа. Несомненно, его дальнейшая разработка позволит разработать новые классы селективных и устойчивых фаз для всех классов органических соединений. [c.182]

    При планировании и проведении исследований мы пользовались накопленной в специальной литературе информацией. Пам представлялось, что в гельироникающей хроматографии, где разделение компонентов смеси ведется в соответствии с размером молекул, линейные полимеры не самые подходящие аналоги асфальтеновых веществ. Наши предположения нашли подтверждение в работе Балтуса и Андерсона [5]. Авторы статьи па примере [5] фракций нефтяных асфальтенов (с молекулярными массами от 3000 до 48 ООО) определили коэффициенты диффузии в растворе ТГФ при 25 °С на мембранах с радиусом пор 8— 220 нм. Эти фракции были выделены методом ГПХ на М-стиро-геле с размером пор 10, 50, 100 и 1000 им, растворитель — ТГФ, анализируемое вещество — 1 %-й раствор нефтяных асфальтенов в ТГО. Объемы удерживания каждой фракции асфальтенов сравнивали с объемом удерживания стандартных фракций полистиролов (ПС), молекулярные массы которых идентичны [c.34]

    НОСТИ детектора и электроизмерительной схемы. На хроматографе с катарометром (с вольфрамовой нитью сопротивлением 40 ом) и регистрирующем приборе типа Э11П-09 со шкалой 5 мв можно определить углеводороды в количеств е ОД % и выше. Пример разделения показан на рис. 4. [c.148]


Смотреть страницы где упоминается термин Хроматография примеры разделений: [c.15]    [c.544]    [c.15]    [c.567]    [c.247]    [c.320]    [c.312]    [c.11]   
Практическое руководство по жидкостной хроматографии (1974) -- [ c.242 , c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Хроматография разделение



© 2025 chem21.info Реклама на сайте