Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентная оболочка

    В пятом периоде наблюдается такая же картина сначала заполнение 5х-орбиталей, затем заполнение уровня с и = 5 прерывается заселением погруженных в общее атомное электронное облако 4 -орбиталей, которое соответствует построению второго ряда переходных металлов, и, наконец, заполнение 5р-орбиталей, завершающееся построением валентной структуры благородного газа ксенона, Хе 4 5> 5р. Общим свойством всех благородных газов является наличие у них заполненной внешней электронной оболочки х р. В этом и заключается причина упоминавшейся выше особой устойчивости восьмиэлектронных валентных оболочек (см. гл. 7). Запоздалое заполнение /-орбиталей (и /-орбиталей) обусловливает появление неодинаково длинных периодов в периодической системе первый период содержит 2 элемента, второй включает 8 элементов, а третий тоже только 8, хотя мог бы содержать 18 элементов (на уровне с и = 3 размешается 18 электронов), затем следует четвертый период с 18 элементами, хотя он мог бы содержать 32 элемента (на уровне с и = 4 размещается 32 электрона). [c.398]


    Применяется также методика Гиллеспи, учитывающая отталкивание электронных пар валентной оболочки. Согласно Гиллеспи, [c.103]

    Под нуклеофильной группой понимают ион или молекулу, имеющие заполненную валентную оболочку, которые могут действовать как основание Льюиса, т. е. быть донорами электронов. Наиболее распространенными нуклеофильными реагентами являются ионы С1 , Вг , 1-,0Н , Н0 и молекулы, содержащие О, N5 8. [c.472]

    Атомы элементов группы VIA, например кислорода или серы, с валентной электронной конфигурацией имеют в валентной оболочке две вакансии и, следовательно, образуют друг с другом по две двухэлектронные связи. При нормальных температуре и давлении наиболее устойчивой формой элементарного кислорода являются двухатомные молекулы, тогда как сера в этих условиях существует в виде твердого вещества, две главные аллотропные модификации которого состоят из дискретных циклов Sg (рис. 14-3). Сера имеет еще две другие аллотропные модификации, одна из которых состоит из циклов Sf,, а другая содержит спиральные цепи из атомов S. [c.602]

    В заключение определим ограничительный класс химических веществ как подкласс интегрального класса, химические соединения которого удовлетворяют двум дополнительным требованиям 1) ни один из атомов химического соединения не имеет чистого электрического заряда 2) химические соединения подчиняются октетному правилу Льюиса, т. е. все их атомы, включая водород, имеют валентные оболочки из одной х- и трех р-орбиталей, заполненные в общем восемью электронами. [c.176]

    Переменные валентные оболочка [c.105]

    Рассмотрим теперь математическое представление реактантов, учитывающее явление геометрической изомерии. Отметим сразу, что современные формулы строения химических веществ непригодны для проведения расчетов на ЭВМ химических реакций, так как их нельзя непосредственно ввести в оперативную намять ЭВМ или записать на внешние носители информации. Далее, для этой цели нецелесообразно использовать и векторное представление молекул, которое строилось на основе их брутто-формул. Следовательно, требуются дальнейшие обобщения, связанные с представлением молекул в виде матриц определенной размерности, равной числу содержащихся в молекуле атомов. При формировании элементов этой матрицы, называемой В-матрицей, учитывается, что каждый атом состоит из атомного остова, составленного из ядра атома и внутренних электронов и имеющего некоторый формальный заряд, и электронов валентной оболочки. Последние менее сильно связаны с атомным остовом и участвуют в образовании химических связей. [c.174]


    Рассмотрение NOJ и многих других молекул и ионов показывает, что используемая нами простая схема подсчета электронов и их отнесения к валентным оболочкам атомов в качестве связывающих или неподе-ленных пар не вполне удовлетворительна. К счастью, эту простую модель можно легко видоизменить таким образом, чтобы она охватывала многие более сложные случаи. В примере с N 2 суть проблемы заключается в том, что этот ион в действительности более симметричен, чем каждая из двух записанных для него выше льюисовых электронных структур. И если наложить друг на друга изображения этих структур, можно получить новую структуру, обладающую такой же симметрией, что и сама молекула. Метод наложения структур аналогичен такому способу записи структур  [c.477]

    Можно считать, что в твердом гидриде бериллия каждый атом Ве окружен восьмеркой электронов и поэтому приобретает замкнутую валентную оболочку. [c.558]

    Конечно, тут открывается большой простор для фантазии теоретика (деформируй отдельные электронные облака атомов молекулы так, или почти так, как хочешь, благо математика это позволяет ). Можно сосредоточить (локализовать) электронную плотность частично на атомах (в виде электронных пар внутренних оболочек атомов или неподеленных электронных пар валентной оболочки), а частично на химических связях (локализация электронов в поле двух ядер отвечает двухцентровому взаимодействию атом — атом, которое описывается классической символикой валентного штриха), а можно пользоваться и делокализованными орбиталями, охватывающими в принципе все атомные ядра молекулы. Разумный теоретик стремится воспользоваться этой свободой для того, чтобы построить модель, приемлемую для химика и пригодную для описания данного класса свойств. [c.210]

    В данной главе будет рассмотрен простой метод описания ковалентных связей с использованием структурных схем Льюиса. Мы занищем льюисовы структуры для известных молекул и ионов и дадим им объяснение, пользуясь представлениями об обобществлении электронных пар и построении замкнутых валентных оболочек такого типа, как у атомов благородных газов. Затем мы объясним степени окисления атомов в соединениях на основе соображений о неравномерности обобществления электронных пар атомами, обладающими разной электроотрицательностью, после чего перейдем к установлению взаимосвязи между кислотностью некоторых молекул и электронным строением их центрального атома. В последней части главы будет показано, как для предсказания формы молекул используется метод отталкивания валентных электронных пар (ОВЭП). [c.465]

    В валентной оболочке иона бромония Вг имеется всего шесть электронов. С помощью пары я-электронов бензола он образует простую связь с атомом углерода. Но в результате в валентной оболочке соседнего атома углерода остается только шесть электронов. Такая частица довольно неустойчива. Отщепление протона от связанного с бромом атома углерода превращает эту частицу в более устойчивую молекулу бромбензола. Таким образом происходит замещение атома водорода ароматического цикла атомом брома. [c.427]

    Одновременная адсорбция донора и акцептора на одном и том же активном центре протекает без участия свободных носителей тока в твердом теле, она происходит просто путем переноса электронов через валентную оболочку катиона  [c.29]

    F a MOTpHM для примера типы и структуру простых веществ, образованных элементами третьего периода. Так, у р-элемента VIII группы аргона (Зз Зр"), имеющего завершенную валентную оболочку [c.232]

    При гомолитическом разрыве связи пара электронов разъединяется с возникновением свободных радикалов. Свободные радикалы — это молекулы или атомы, имеющие неспаренный (неподелен-ный) электрон на внешней (валентной) оболочке, т. е. являются незаряженными частицами  [c.28]

    УФ и видимый 10- 12,4 1200 валентных оболочках Электронные переходы в [c.60]

    Водород образует, как правило, ковалентную двухэлектронную связь, причем его валентная оболочка оказывается полностью заполненной. Однако, как показывает существование иона Н2+ (разд. 6.2.1), спаривание электронов не является необходимым для образования связи. [c.460]

    Решение. Атом брома имеет семь валентных электронов. При образовании простых связей между атомом брома и тремя атомами фтора последние поставляют в валентную оболочку молекулы еще три электрона. Согласно теории [c.295]

    У элементов любой отдельно взятой группы с возрастанием атомного номера происходит увеличение атомного радиуса и соответственно уменьшение электроотрицательности и энергии ионизации. Металлический характер элементов изменяется в зависимости от их электроотрицательности. В семействах неметаллических элементов первый член каждого семейства значительно отличается от остальных его членов. Во-первых, он образует не более четырех связей с другими атомами (т.е. число электронов в валентной оболочке его атома ограничено октетом). Кроме того, он обнаруживает намного большую способность к образованию п-связей, чем более тяжелые элементы той же группы. [c.329]


    Четырехкоординационные комплексы обычно имеют геометрическую структуру одного из двух следующих типов тетраэдрическую или плоско-квадратную (рис. 23.1). Структура первого типа встречается чаще, особенно она распространена среди комплексов непереходных металлов. Плоско-квадратная структура характерна для комплексов переходных металлов с валентной оболочкой, включающей восемь -электро- [c.372]

    Происхождение и величину градиентов электрических полей на ядрах атомов в молекулах приближенно объясняют с точки зрения характера химических связей и распределения электронной плотности в рамках теории МО ЛКАО. В молекулярных кристаллах основной вклад в градиент поля на ядре дают валентные электроны рассматриваемого атома, а в простейшем подходе Таунса и Дейли для таких атомов, как и галогены, показывается, что градиент создают главным образом р-электроны валентной оболочки. Исходное положение этого подхода состоит в том, что градиент электрического поля в направлении г (например, совпадающем с направлением связи, см. рис. IV.2) в молекуле е мол можно выразить через градиент электрического поля в свободном атоме е<7ат в виде линейного соотношения  [c.105]

    В водных растворах ионы металлов являются льюисовскими кислотами, а такие комплексные ионы, как Fe(N0)2 Сг(Н20)Г и А1К ", можно рассматривать как комплексы кислота — основание. Благодаря большой валентной оболочке атомов неметаллов, находящихся ниже второго ряда периодической таблицы элементов (3, Р, С1, Вг, I и т. д.), они могут проявлять свойства как кислот, так и оснований Льюиса. Ион 1 в реакции с ионами металлов (кислота Льюиса) может действовать как основание, давая весьма стабильные комплексы, такие, как ]ig(I) . С другой стороны, 1а может действовать как кислота в реакциях с донорами электронов, приводя к образованию комплексов с различной стабильностью. Равновесие к реакции I" - - 1а 1 в 0,1 М водном растворе сильно сдвинуто вправо (А рави = 140 л1молъ), АН° = — 4,0 ккал. [c.499]

    В диазометане (H2 NN) один атом азота присоединен непосредственно к атому углерода, а второй атом азота присоединен к первому. Запишите для этой молекулы льюисовы структуры при условии, что а) два атома N соединены между собой тройной связью, б) второй атом N образует две двойные связи с С и N. В правильно составленной льюисовой структуре каждый из атомов С и N должен иметь в своей валентной оболочке по восемь электронов. Каковы формальные заряды на атомах в каждой из двух структур  [c.506]

    Из трех мопекул, обсуждавшихся в предыдущем разделе, только СН4 имеет электронную конфигурацию замкнутой валентной оболочки. При обычных те.мпературах и давлениях ВеНз, а также ВН3 используют свои вакантные валентные орбитали для образования более крупных молекулярных агрегатов. Гидрид бериллия при нормальных условиях представляет собой твердое вещество, в котором атомы водорода обобществляют [c.557]

    Атомы элементов группы VA с валентной электронной конфигурацией имеют в валентной оболочке три вакансии и поэтому должны обра- [c.602]

    Общее число валентных электронов = 2Ь — которые находятся в валентной оболочке А с учетом образования с ним химических связей других атомов АМ, также лежит внутри интервала (bumini kmax)- Сумма Т всех элементов 1 е-матрицы равна общему числу валентных электронов общей совокупности [c.175]

    Изот ропное сверх гонкое взаимодействие выражается как Ио = h y/y Y.y -. где величина S-волновой функ1Н1и валентной оболочки в самосогласованном ноле у ядра нейтральною агома Изотон радиоакзивен [c.440]

    В л-комплексах образуются гибридные Пе-, Пр- и (гг—1)< -орбн-тали (п — валентная оболочка). Если общее число электронов на этих орбиталях меньше числа электронов на аналогичных орбиталях благородного газа, незаполненные орбитали могут быть использованы для координации и последующего химического изменения молекул, окружающих комплекс, и тогда л-комплекс может проявлять каталитические свойства. Другой, более существенной причиной каталитической активности л-комплексов является неравномерность электронного облака, если металл окружен разными лигандами, как, например, в случае комплекса (СеН5СМ)2 Р(1С12. [c.102]

    По мнению ряда исследователей, хемосорбцию на металлах можно объяснить, предположив, что образование связи между металлом и молекулой сорбата определяется наличием у металла донорных или акцепторных электронных уровней. Металлы с простой валентной оболочкой, образующей 5-зопу, являются типичными донорами электронов с малой плотностью уровней в зоне. Такие металлы хорошо адсорбируют акцепторы электронов, т. е. молекулы окислителей. Однако пз-за большой прочности образующейся связи с переходом металла в другую фазу (окисел, сульфид и т. п.) такие металлы, как правило, непригодны в качестве катализаторов. [c.21]

    На основании представления о гибридизованных АО углерода субстрата, реагента и активированного комплекса Витвицкий 1242] предложил метод количественной оценки энергии активации реакций (15.1). Проще всего этот метод проиллюстрировать на примере реакции Н(1) + К(2)Н- К(1)Н К(2) + (3, в которой реагирующий атом углерода исходного радикала находится в гибридном р -состоянии, а атом углерода исходной молекулы — в состоянии 5р . Для отрыва Н-атома от 5/7 -гибридизованного атома углерода субстрата необходимо, чтобы валентная оболочка этого атома перешла в 5р -гибридизованное состояние, что требует затраты 57,5 кДж-моль- 1242]. Поэтому с учетом теплоты реакции энергетический барьер, который должна преодолеть исходная система, равен [c.154]

    Электронная конфигурация валентной оболочки атомов этих элементов в значительной степени определяет их химическое поведение. В соответствии с правилом Хунда на двух из трех р-орбиталей находится по одному неспаренному электрону. Тем самым у атома возникает возможность образовать две ко- еалентные связи путем соединения с двумя атомами того же ли иного вида. С использованием свободных -орбиталей атомы серы, селена и теллура в зависимости от типа лиганда мо-тут давать от шести до восьми связей. Гибрвдная зр -конфи- Гурация соответствует октаэдрическому расположению, например, в SFe. С ростом радиуса атомов и, следовательно, увели- чением способности к предоставлению орбиталей усиливается [c.512]

    Каждое основание, которое мы обсуждали до сих пор, будь то ОН , Н О, какой-нибудь амин и ш анион, является донором электронной пары. Любое вещество, обладающее свойствами основания в рамках представлений Бренстеда - Лаури (т.е. акцептор протона), с точки зрения Льюиса, также является основанием (до1юром электронной пары). Однако в теории Льюиса допускается, что основание донируег электронную пару не только ее акцептору Н . Поэтому определение Льюиса значительно расширяет круг веществ, которые могут рассматриваться как кислоты Н представляет собой отнюдь не единственно возможную, с точки зрения Льюиса, кислоту. Рассмотрим, например, реакцию между КН, и ВРз. Эта реакция возможна по той причине, что в валентной оболочке ВРз имеется вакантная орбиталь (см. разд. 7.7, [c.99]

    Мы уже неоднократно отмечали, что для элементов группы 8А характерна химическая инертность. До сих пор мы обсуждали главным образом физические свойства этих элементов, как, например, при изучении межмолекулярных сил в разд. 11.5, ч. 1. Согласно теории химической связи Льюиса, высокая инертность благородных газов обусловлена наличием в валентной оболочке их атомов полного октета электронов. Устойчивость такой валентной э [ектронной оболочки проявляется в высоких энергиях ионизации элементов группы 8А (см. разд. 6.5, ч. 1). [c.286]

    Поскольку благородные газы чрезвычайно инертны, следует ожидать, что, если они и способны вступать в реакции, то лишь в очень жестких условиях. Далее, следует ожидать, что способность к химическим превращениям в первую очередь должны проявлять наиболее тяжелые благородные газы, поскольку они обладают более низкими энергиями ионизации, как это видно из рис. 6.6, ч. 1. Более низкая энергия ионизации предполагает возможность потери атомом электрона при образовании ионной связи. Кроме того, поскольку элементы группы 8А уже содержат в своей валентной оболочке восемь электронов (за исключением гелия, в атоме которого всего два электрона), образование ими ковалентных связей возможно лишь с участием орбиталей из надва-лентной оболочки. Но, как известно (из разд. 7.7, ч. 1), этой способностью обладают главным образом атомы более тяжельос элементов. [c.287]

    Решение. Прежде всего запишем льюисову (валентную) структуру молекулы. Полное число валентных электронов в ней равно 42 8 от атома ксенона, по 7 от каждого из четырех атомов фтора и б от атома кислорода. Валентная структура молекулы ХеОР показана на рис. 21.7, а. Мы видим, что в валентной оболочке Хе содержится 12 электронов. Следовательно, можно предположить, что шесть электронных пар образуют октаэдрическую конфигурацию. Одна из них осуществляет связь с атомом кислорода. [c.288]

    Бор - единственный элемент группы ЗА, ксзторый мнжет считаться неметаллическим. Этот элемент в твердом состоянии имеет протяженную каркасную структуру. Температура плавления бора, 2300°С, является промежуточной между температурами плавления углерода, 3550°С, и кремния, 1410°С Атом бора имеет электронную конфигурацию [Не]2х 2р. Этот элемент во всех своих обычно встречающихся соединениях трехвалентен. Мы уже упоминали в разд. 7.7, ч. 1, что электронное окружение атома бора в его галогенидах является исключением из правила октета, поскольку в валентной оболочке бора имеется всего шесть электронов. По этой причине галогениды бора являются сильными льюисовыми кислотами (см. разд. 15.10). [c.328]


Смотреть страницы где упоминается термин Валентная оболочка: [c.105]    [c.365]    [c.395]    [c.271]    [c.176]    [c.437]    [c.437]    [c.178]    [c.185]    [c.60]    [c.493]    [c.296]    [c.424]   
Органическая химия (1979) -- [ c.51 ]

Химия (2001) -- [ c.59 , c.234 ]

Теория молекулярных орбиталей в органической химии (1972) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка



© 2025 chem21.info Реклама на сайте