Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внутриклеточные движения

    Механохимическая функция сократительных белков, неразрывно связанная с ферментативной, ответственна за клеточные и внутриклеточные движения, т. е. за перемещение клетки, за движение протоплазмы, за перемещение веществ в делящейся клетке при митозе. Сократительные белки — это ферменты, в результате каталитической деятельности которых химическая энергия превращается в механическую работу. [c.176]


    Белки выполняют поразительно много разнообразных заданий. Почти все химические реакции в организме катализируются особой группой белков, называемых ферментами. Расщепление питательных веществ для генерирования энергии и синтез новых клеточных структур включают тысячи химических реакций, возможность протекания которых обеспечивается белковым катализом. Белки также выполняют роль переносчиков, например гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения — это взаимодействие молекул белков, чье предназначение состоит в осуществлении координированных движений. Еще одна группа белковых молекул, так называемые антитела, защищает нас от чужеродных веществ, таких как вирусы, бактерии и клетки других организмов. Активность нашей нервной системы также зависит от белков, которые получают, передают и собирают информацию из внешнего мира. Белки — это также гормоны, управляющие ростом клеток и координирующие их активность. [c.116]

    Микротрубочки — элементы цитоплазмы, участвующие в создании морфологии клетки, в движении цитоплазмы, во внутриклеточном транспорте и в явлениях сократимости цитоплазмы. Установлена роль микротрубочек в поддержании формы клетки пли в осуществлении контроля над ней (цитоскелетная функция), в процессах внутриклеточного движения, например в расхождении хромосом при участии клеточного веретена микротрубочки выполняют функцию каналов, проводящих направленные потоки. Функции микротрубочек в нервных аксонах рассмотрены в гл. 37. [c.382]

    Как же осуществляется регуляция внутриклеточного движения Интерфазные микротрубочки имеют в основном одинаковую ориентацию, их быстро растущий конец направлен в сторону периферии клетки. Это исключает такие модели клеточного движения, в которых предполагается, что расположенные антипараллельно микротрубочки служат рельсами для движения в двух взаимно противоположных направлениях. Простейшее объяснение движения состоит, вероятно, в том, что движущиеся частицы мсй ут как вступать, так и не вступать в контакт с системой микротрубочек, но всегда способны вза- [c.94]

    Все биологические процессы осуществляются при непременном участии белков. Они служат регуляторами генетической функции нуклеиновых кислот, в качестве ферментов участвуют во всех стадиях биосинтеза полипептидов, полинуклеотидов и других соединений, катализируют все метаболические процессы. Особые сократительные белки ответственны за клеточные и внутриклеточные движения. В комплексе с липидами белки вхбдят в состав мембран, обеспечивая активный транспорт метжолитов в клетку и из нее. Белки служат для запасания и перешса кислорода. Низкомолекулярные полипептиды, гормоны, Стимулируют функциональную активность в клетках других тканей и органов. Белки осуществляют иммунологическую функцию, защищая организм от чужеродных соединений. Они входят в состав кожи, волос, соединительных тканей, костей и т. д., выполняя динамическую опорную функцию, обеспечивая тем самым взаимосвязь органов, их механическую целостность н защиту. Это далеко не полный перечень осуществляемых белками функций. [c.5]


    Миозин является белком многих качеств. В сокращении скелетных, сердечных и гладких мышц и во внутриклеточных движениях он одновременно выполняет, по крайней мере, три ключевых функции - структурную, аллостерическую и ферментативную. Наиболее полезная информация о функциях миозина была получена при исследовании поперечнополосатых скелетных мышц, сокращающихся произвольно, а также аналогичных тканей беспозвоночных, прежде всего летательных мышц насекомых. Электронно-микроскопическое изучение продольных и поперечных тонких срезов скелетных мышц, впервые проведенное в 1953 г. X. Хаксли, выявило высокий уровень их структурной организации [439]. Уже в следующем году X. Хаксли вместе с Дж. Хенсоном предложили так называемую модель скользящих нитей, которая имела основополагающее значение для понимания природы и молекулярного механизма мышечных сокращений [440]. Скелетные мышцы - это пучки мышечных волокон, наиболее крупным повторяющимся структурным элементом которых является миофибрилла - цилиндрическая нить диаметра 1-2 мкм (1000-2000 А), идущая от одного конца клетки до другого. Миофибрилла, в свою очередь, содержит белковые филамен-ты двух типов толстые и тонкие. Основной белок толстых нитей - миозин, тонких - актин. Миозиновые и актиновые филаменты в миофиб-рилле строго упорядочены. Функциональной сократительной единицей миофибриллы является саркомера, имеющая длину около 2,5 мкм и разделяющаяся на I- и А-диски (рис. 1.31). Толстые филаменты (длина 1,6 мкм и толщина 0,015 мкм) тянутся от одного края А-диска до другого, а тонкие (длина 1,0 мкм и толщина 0,008 мкм) идут от [c.120]

    Как уже неоднократно упоминалось, растительные организмы тоже способны к свободным перемещениям в пространстве. Но заметить их, как и внутриклеточные движения, невооруженным глазом мы не можем. Лишь изобретение микроскопа голландцами Й. и 3. Янсенами примерно в 1590 г. позволило исследователям шаг за шагом проникать в до тех пор невидимый, а следовательно, и неизвестный микромир живых существ ныне же мы знаем, что нас окружают миллиарды микробов. Несомненно, вам известно о достигнутых за последнее столетие успехах в борьбе с эпидемиями, вызываемыми микроорганизмами. [c.39]

    Движение — это перемещение организма или его частей в пространстве. Способность к активному движению, т. е. к движению с затратой метаболической энергии, — характерное свойство всех живых организмов. Двигательная активность как животных, так и растений необходима для питания, защиты и размножения. У большинства растений движения не удается наблюдать непосредственно, так как они происходят очень медленно. Круговые движения (нутащ1и) совершают верхушки побегов и корней проростков, побеги и листовые пластинки поворачиваются к свету (тропизмы), при смене дня и ночи открываются и закрываются цветки (настии) и т. д. В ускоренном темпе все это можно наблюдать, используя технику цейтрафер-ной съемки. Некоторые растения обладают быстрыми двигательными реакциями, сходными по скорости с движениями животных (мимоза стыдливая, мухоловка, тычинки василька и барбариса и др.). Близки по скоростям у растений и животных внутриклеточные движения (цитоплазмы и органоидов), а также локомоторные движения одноклеточных (таксисы) с помощью жгутиков или ресничек. [c.390]

    Зато арсенат, вызывающий истощение запаса АТФ, не влиял на вращение хлоропластов. Оно не тормозилось также цитохалазином, ингибитором всех известшлх внутриклеточных движений, поддерживаемых энергией АТФ. [c.162]

    Процесс распластывания эндотелиальных клеток напоминает распластывание фибробластов и эпителиальных клеток. В фазе начального прикрепления на поверхности клетки образуются филоподии, которые исследуют окружающее пространство. Собственно распластывание происходит после того, как большая часть клеточной поверхности окажется в контакте с субстратом. Когда клетка распластается достаточно сильно, микрофиламенты объединяются и формируют волокна натяжения, а микротрубочки распространяются от центра клетки в радиальном направлении. Как только система микротрубочек становится достаточно развитой и мйкротрубочки оказываются способны к латеральным взаимодействиям, вдоль них начинается радиальное движение различных органелл [109]. Впоследствии радиальная связь между органеллами и микротрубочками становится менее явной, из-за того что распределение микротрубочек в клетке делается более равномерным. К обсуждению вопроса о структурной основе внутриклеточного движения мы еще вернемся позднее. [c.65]

    Большинство внутриклеточных структур характери-зуется определенным положением и определенными путями перемещения в клетке. Как ни велико разнообразие внутриклеточных движений, все они могут быть разделены на две категории. Центральный район клеток, содержащий микротрубочки и промежуточные филаменты, содержит также разнообразные клеточные органеллы. Некоторые из этих органелл, такие, как аппарат Гольджи или липидные капельки, занимают фиксированное положение, хотя время от времени оно может специфическим образом изменяться. Эндоплазматиче-ский ретикулум, лизосомы и митохондрии, напротив, довольно подвижны и легко деформируемы. Подвижность эндоплазматического ретикулума ограниченна, тогда как лизосомы и митохондрии могут совершать в клетке разнообразные движения. С помощью специальной высококонтрастной микроскопии в центральном районе клетки выявляются также движущиеся в нем клеточные органеллы небольшого размера [161]. [c.90]


    Движение органелл в центральной части клетки зависит от присутствия интактных микротрубочек, но обычно устойчиво к действию цитохалазинов. Органеллы движутся независимо друг от друга две частицы, расположенные рядом, совершенно не обязательно совершают движение одного и того же типа [162]. Движение не подавляется ванадатом, когда его вводят в клетки путем микроинъекции [163] в то же время ванадат подавляет его в клетках, мембрана которых сделана проницаемой [164]. Из этого следует, что механохимические белки, участвующие во внутриклеточном движении, не идентичны динеину жгутиков, но, возможно, сходны с ним. Движение органелл происходит прерыви- [c.90]

    Определенные типы внутриклеточного движения включают в себя перемещение и между центральной и кортикальной областями, и через клеточную мембрану. Существуют две формы такого движения. Движение наружу происходит при экзоцитозе, и, в частности, при секреции. Секреция протекает в несколько стадий она начинается с синтеза белков на грубом эндоплазмати-ческом ретикулуме, затем они переходят с помощью аппарата Гольджи в секреторные гранулы, и, наконец гранулы перемещаются к клеточной поверхности. Вы-> [c.92]

    Наконец, последний тип внутриклеточного движения — это перемещение самих цитоскелетных элементов. В нейронах цитоскелет представляет собой вытянутую, линейную структуру, что делает возможным определение скорости его движения. В этих клетках наблюдаются две волны компонентов цитоскелета, мигрирующих по направлению от тела клетки эти две волны xopoшoJ различимы и носят название медленного компонента а и медленного компонента Ь . С медленным компонентом а транспортируются микротрубочки и нейрофил а-менты, а с компонентом Ь — актин и другие белки. Оба компонента транспортируют и белки, являющиеся, вероятно, цитоскелетными, и белки, которые считаются растворимыми, например енолазу и креатинкиназу [22]. Тот факт, что указанные ферменты переносятся той же транспортной системой, что и цитоскелет, указывает на возможность связи ферментов с элементами цитоскелета [22]. [c.94]

    Экстракты, полученные из животных клеток многих типов, образуют гель, если к ним добавить АТР и прогреть до 37 °С Этот процесс связан со взаимодействием актиновых филаментов и сшивающего бежа, например филамина, однако поведение такого геля оказывается более сложным, чем у простой смеси филамина с актиновыми филаментами. Так, при увеличении концентрации Са выше 10 М актиновый гель начинает разжижаться. Под микроскопом в участках, где происходит такой переход геля в золь, можно увидеть весьма энергичные локальные течения Очевидно, в экстрактах помимо актиновых филаментов и филамина должны присутствовать еще какие-то компоненты, благодаря которым ионы вызывают превращение геля в золь и движение жидкости. Вероятно, именно эти компоненты ответственны за течете ципюпяазмы, наблюдаемое в некоторых крупных клетках, где оно необходимо для равномерного распределения метаболитов и других веществ. Эти внутриклеточные движения связаны, по-видимо1у , с быстрыми локальными изменениями в консистенции цитоплгвмы - переходами гель/золь. [c.276]


Смотреть страницы где упоминается термин Внутриклеточные движения: [c.276]    [c.392]    [c.391]    [c.28]    [c.212]    [c.29]    [c.90]    [c.92]    [c.526]   
Смотреть главы в:

Физиология растений -> Внутриклеточные движения




ПОИСК







© 2025 chem21.info Реклама на сайте