Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетический анализ родословной

    Генетический анализ родословной [c.11]

    Х.З. ГЕНЕТИЧЕСКИЙ АНАЛИЗ РОДОСЛОВНОЙ [c.129]

    Генетический анализ родословных на основе менделевского дискретного разделения потомства по фенотипу для болезней с наследственной предрасположенностью можно применять только в ограниченных пределах и при больщих выборках, чтобы в них вошёл материал по всему многообразию клиники данного заболевания. При этом, по-видимому, следует ограничивать исследование данными о родственниках II степени родства (в крайнем случае — не далее III). [c.207]


    Идентификация индивидуальной хромосомы, в которой находится исследуемый ген,-это только первый этап картирования. Основной задачей являются установление порядка генов и их точная локализация. В некоторых случаях метод анализа родословных позволяет расположить на генетической карте хромосомы три и более маркеров. Использование более эффективных методов генетики соматических клеток может дать более точную информацию. Существенную помощь в таких исследованиях оказывают хромосомные перестройки (см. гл. 21). Далее мы рассмотрим примеры использования делеций, транслокаций или дупликаций для картирования генов. [c.301]

    Технология рекомбинантных ДНК, чаще называемая генной инженерией, революционизировала биологию и оказала огромное влияние на клиническую медицину. До разработки методов рекомбинантных ДНК наследственные болезни человека изучали с помощью анализа родословных и исследуя аномальные белки. Однако во многих случаях, когда конкретный вид генетического повреждения установить не удается, эти подходы оказываются малоэффективными. Новая технология позволяет адресоваться за нужной информацией непосредственно к молекуле ДНК. В настоящей главе рассмотрены основные концепции, на которых базируется технология рекомбинантных ДНК, ее применение в клинической медицине. В конце главы помещен краткий словарь-справочник. [c.35]

    Существенное значение имеет тщательный анализ гетерогенности. В этой группе широко распространенных признаков за диагнозом одной болезни часто могут скрываться несколько заболеваний с разными генетическими и негенетическими причинами. Кроме того, часто имеет место генотип-средовое взаимодействие, которое трудно оценить. Передачу признака в очень большой моногенной родословной можно легко разъяснить генетически, но результаты, полученные для этой группы родственников, могут оказаться неприменимыми к другим индивидам и их семьям. Прежде чем проводить генетический анализ, необходимо стандартизовать данные по возрасту начала, полу и другим факторам. Как правило, наиболее эффективным оказывается сравнение данных исследователя с различными генетическими моделями. Для большого числа моделей разработаны компьютерные программы. С их помощью можно определить соответствие реальных данных тому или иному типу наследования. Среди наиболее распространенных моделей-простое доминантное наследование, рецессивное наследование, полигенное наследование, полигенное наследование в комбинации с главным геном, негенетическая семейная агрегация. Однако даже при столь исчерпывающей обработке данных необходимо проявлять осторожность и не спешить с окончательными выводами. [c.212]


    Учитывая экспрессивность и пенетрантность, генетический анализ признака проводят, используя общирные родословные. [c.114]

    Если гены, образующие группу сцепления, находятся па достаточном расстоянии друг от друга, то между ними возможен кроссинговер. Известны родословные, в которых выявляются кроссоверные особи. Одна из таких родословных представлена на рис. 5.11,5. Проведем генетический анализ этой родословной. В поколении И женщина здорова, но является гетерозиготной носительницей гена гемофилии, полученного ею от своего отца вместе с X-хромосомой. Среди сыновей этой женщины есть пе только гемофилик, но и дальтоник, следовательно мы вправе предположить, что она является носительницей ген, определяющего дальтонизм, хотя сама здорова. Используя для обозначения генов, определяющих развитие гемофилии и дальтонизма, буквенные символы, указанные выше, можно записать генотипы вступающих в брак гетерозиготной женщины и здорового мужчины (П)  [c.121]

    Проведение клинико-генеалогического метода осуществляется в два этапа. Это прежде всего составление родословной и ее графическое изображение, затем генетический анализ полученных данных. [c.124]

    После того как будет обнаружен наследственный характер признака (болезни), необходимо установить тип наследования. Для этого используются принципы генетического анализа и различные статистические методы обработки данных не из одной, а из многих родословных, что является уже исследовательской задачей. [c.89]

    Определение типа наследования в конкретной родословной — всегда серьёзная генетическая задача, хотя на первый взгляд она может показаться довольно лёгкой. Для решения генетических задач по анализу родословных врач должен иметь специальную подготовку. Именно поэтому, когда необходим углубленный клинико-генеалогический анализ, врач обшей практики направляет семью в медико-генетическую консультацию к врачу-генетику. Вместе с тем врачу обшей практики надо знать основные критерии разных типов наследования, которые приводятся ниже. [c.90]

    Для доказательства полигенной природы наследственной предрасположенности к болезням применяются 3 основных метода клинико-генеалогический, близнецовый и популяционно-статистический. При изучении этой группы болезней каждый метод имеет определённые ограничения (по сравнению с методами изучения моногенных форм), которые следует учитывать при проведении исследования. Следует также подчеркнуть, что в связи со сложностью генетического анализа болезней с наследственной предрасположенностью для каждого исследования требуется много больше родословных или близнецовых пар, чем обычно используют в клинической генетике моногенных форм. Для решения одной задачи иногда необходимо исследовать несколько сотен и даже тысяч родословных. [c.206]

    Для большинства этих болезней мультифакториальная генетическая модель с пороговым эффектом дает довольно адекватное описание типа наследования (разд. 3.6). Однако тщательный анализ фенотипов и родословных во многих случаях привел к выделению редких типов заболеваний с простыми способами наследования. Примеры таких болезней (к ним относится, скажем, Х-сцепленная умственная отсталость) приведены в табл. 5.28. Наши знания об индуцированных радиацией доминантных скелетных мутантах мыши свидетельствуют о том, что доминантные главные гены с очень неполной пенетрантностью и крайне вариабельной экспрессивностью встречаются гораздо чаще, чем это до сих пор предполагалось (разд. 3.6.2.5). Болезни этой категории несомненно поддерживаются в популяции новыми мутациями, и число больных может поэтому увеличиваться с ростом частоты возникновения соответствующих мутаций. [c.258]

    В идеале в каждом регионе должна существовать одна лаборатория, которая занимается проведением анализов, направленных на выявление носителей. Важно помнить, однако, что эта информация сама по себе недостаточна для генетического консультирования, поскольку окончательный риск существенно зависит от конкретной родословной. Необходимы оба этапа этой процедуры, что нередко упускается из виду теми, кто для генетического консультирования использует только лабораторную информацию. Одно и то же отклонение от нормы, выявленное при лабораторной диагностике, можно трактовать по-разному в зависимости от вероятности носительства, установленной по родословной. [c.236]

    Таким образом, используя один зонд, можно одновременно наблюдать за наследованием большого количества аллелей. Эволюционная нестабильность, вследствие которой эти последовательности гипервариабельны, не настолько велика, чтобы затруднить сегрегационный анализ, поэтому метод геномной дактилоскопии может быть применен при изучении генетического сцепления [16]. Индивидуальный характер гибридизационной картины позволяет использовать метод в судебной медицине и применять его в качестве инструмента, с помощью которого с высокой степенью достоверности могут быть уточнены структуры родословных. [c.192]

    Заметим, что, хотя генетическая гетерогенность может свести на нет усилия традиционного анализа сцепления, она не выявляется даже сегрегационным анализом (заключающимся в тестировании родословных на соответствие менделевским правилам наследования) сколько бы разных локусов ни участвовало в проявлении рецессивного признака, в каждой семье ожидаемое менделевское расщепление равно 3 1. [c.229]


    Несмотря на то что число идентифицированных локусов быстро увеличивалось, генетическая карта человека до самого последнего времени почти сплошь состояла из белых пятен. Рассмотрим такой пример. 1000 генов, каждый из которых имеет в среднем размер 10 т.п.н. (экзоны плюс интроны), составляют лишь 10 т.п.н. из 3-10 т.п.н. гаплоидного генома человека. Эти гены могут быть разделены миллионами пар оснований, что затрудняет применение метода прогулки по хромосоме или рекомбинационного анализа, поскольку число родословных, позволяющих проводить такой анализ, мало. Что же касается диагностики, то использование этих методов ограничивается отсутствием информации о мутантных генах и дефектных генных продуктах, ответственных за многие генетические заболевания. К счастью, теперь ситуация здесь в корне изменилась благодаря появлению нового подхода, на котором мы остановимся ниже. Этот подход позволяет проследить за судьбой генов в нескольких поколениях он пригоден для целей пренатальной диагностики, анализа распределения гена в популяции, анализа сцепления и картирования. Его можно использовать и для других организмов. Например, таким способом картируют хромосомы кукурузы, что имеет большое научное значение и может найти применение в сельском хозяйстве. [c.353]

    Генеалогический метод широко используется для решения как научных, так и прикладных проблем. Он позволяет выявить наследственный характер признака и определить тип наследования. Наряду с этим метод дает возможность установить сцепленное наследование, определить тип взаимодействия генов и пенетрантность аллелей. Генеалогический метод лежит в основе медико-генетического консультирования. Он включает два этапа составление родословных и их генеалогический анализ. [c.10]

    Классическим способом установления генетической природы того или иного заболевания человека является составление родословных. Такая практика генеалогического анализа [c.243]

    Информативная семья — семья с наследственным заболеванием, в которой имеется достаточное число больных и здоровых родственников из разных поколений (информативные мейозы), что позволяет оценивать расхождение признаков в изучаемой родословной при анализе генетического сцепления. [c.353]

    Пары генов или группы сцепления аутосомных генов невозможно соотнести с конкретными хромосомами, используя только формально-генетический анализ родословных. Для установления конкретной локализации генов использовались морфологические маркеры хромосом. Например, на длинном плече первой хромосомы вблизи центромеры часто обнаруживается вторичная перетяжка. Морфология этой перетяжки бывает различной, а наследуемость определенной морфологии прослеживается в череде поколений. С присутствием слишком тонкой и длинной перетяжки связано наличие некоторых патологий. Анализ родословных в связи с морфологией первой хромосомы выявил группу сцепления из трех локусов врожденной очаговой катаракты, группы крови Даффи и локуса йп — 1. [c.122]

    Анализ родословных чрезвычайно полезен для установления типа наследования специфического состояния, однако не дает никакой информации об ассоциированном с данным заболеванием гене, о биологической основе нарушения или — в случае аутосомного заболевания — о хромосомной локализации гена. Более того, не всегда можно определить, является ли заболевание наследственным. Во-первых, не у всех лиц, несущих дефектный ген, про5шляются симптомы заболевания (неполная пе-нетрантность). Во-вторых, симптомы (фенотип) могут варьировать от слабых до ярко выраженных (варьирующая экспрессивность). В-третьих, один и тот же фенотип может обусловливаться дефектами в совершенно разньгх генах (генетическая гетерогенность). В-четвертых, в некоторых случаях альтернативные формы (аллели) одного гена могут приводить к разным фенотипам. В-пятых, из-за небольшого размера семей со случаями исследуемого заболевания приходится собирать данные о большом числе родословньгх, чтобы сделать вывод о природе этого заболевания. [c.442]

    Из анализа родословных известно, что имеются два набора аллелей, один для протанопии, а другой для дейтеранопии. Родословные типа указанных на рис. 3.30 и 3.31 демонстрируют генетическую независимость этих дефектов цветоощущения, однако некоторые наблюдения свидетельствуют о наличии редких мутаций, не обнаруживающих полной комплементации [668]. Согласно последним результатам молекулярной генетики, гены протанопии и дейтеранопии произошли от одного гена путем дупликации, последующих мутаций, неравного кроссинговера или генной конверсии [825а]. [c.209]

    Для построения генетических карт у растений и животных проводят анализирующие скрещивания, в которых достаточно просто рассчитать процент особей, образовавшихся в результате кроссинговера, и построить генетическую карту по трем сцепленны.м генам. У человека анализ сцепления генов классическими методами невозможен, поскольку невоз.можны экспериментальные браки. Поэтому для изучения фупи сцепления и составления карт хромосом человека используют другие методы, в первую очередь генеалогический, основанный на анализе родословных. Рассмотрим на конкретном примере, как можно выявить группу сцепления генов и констатировать кроссинговер, анализируя родословные. [c.120]

    Генетические методы включают в себя весь арсенал генетического анализа болезни — от применения клинико-генеалогического метода до секвенирования гена. Накопление родословных по какому-либо заболеванию и их генетический анализ позволяют подразделять ранее описываемую одну болезнь на реально существующие формы, если в этой группе встречаются мутации с доминантным и рецессивным типом наследования. Именно так были подразделены синдром Марфана (доминантное наследование) и гомоцистинурия (рецессивное наследование), имеющие сходную клиническую картину (высокий рост, подвывих хрусталика, деформация грудной клетки). Разные типы наследования обнаружены во многих гетерогенных группах болезней (синдром Элерса—Данло, мукополисахаридозы, витамин О-резистентный рахит, амиотрофия Шарко—Мари). [c.124]

    Изучение отдельной большой родословной. Другой подход, позволяющий избежать осложнений, вызванных генетической гетерогенностью, — это работа с отдельной родословной, достаточно большой для проведения анализа сцепления. К примеру, Гузелла [16] проанализировал одну обширную родословную (сотни индивидов) из Венесуэлы, в которой сегрегировала хорея Гентингтона. Хотя дальнейшие исследования сцепления показали, что люди, страдающие этой болезнью, составляют генетически гомогенную группу, этот факт все же нельзя было заранее предсказать. При исследовании большой родословной в религиозной общине амишей Эгланд продемонстрировал расщепление по наследуемой форме I маниакально-депрессивного психоза. Кроме того, обнаружено сцепление с ПДРФ-маркером на хромосоме Ир. Анализ нескольких других больших родословных [32, 33] не выявил сцепления с этим районом и доказал таким образом наличие гетерогенности. [c.227]


Смотреть страницы где упоминается термин Генетический анализ родословной: [c.49]    [c.49]    [c.147]    [c.249]    [c.450]    [c.244]    [c.170]    [c.215]    [c.215]   
Смотреть главы в:

Основы генетики наследственные нарушения развития у детей -> Генетический анализ родословной




ПОИСК







© 2025 chem21.info Реклама на сайте