Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрод на основе биологической

    Потенциал между водородным и кислородным электродами соответствует изменению свободной энергии при реакции окисления водорода до воды (перенос 2Н+ и 2е- на атом кислорода). Наличие ряда биохимических окислительно-восстановительных систем, приведенных в табл. 14, позволяет расчленить этот потенциал на ряд промежуточных этапов, лежащих в основе процессов биологического окисления. [c.256]


    Так, описан [115] К -селективный электрод с мембраной на основе биологических материалов, потенциал которого зависит от активности ионов калия в растворе по уравнению Нернста. Другой электрод с константами селективности и Kk°-nh4 = 10 , обнаруживающий мгновенную реакцию на К% изготовлен на основе полимерного материала, содержащего макро-циклический антибиотик (точный состав не назван) [116]. Последний период ознаменовался энергичными разработками твердых мембран на основе соединений, связывающих в комплекс и переносящих ион калия через полимерную матрицу, в которой содержится комплексующий агент. Разработаны электроды с мембранами из силиконового каучука, содержащими валиномицин (см. его структуру в главе о жидких мембранах), с применением и без применения пластификатора оценены их селективность к иону калия, стабильность, воспроизводимость [117]. В табл. VII.7 приведены некоторые характеристики различных мембран, содержащих валиномицин. Селективность к К+ этих электродов по сравнению с селективностью к большинству ионов щелочных и щелочноземельных металлов [118] почти такая же (табл. VII.8), как у обычных электродов с жидкими мембранами (фильтр из милли-пора, пропитанный раствором валиномицина в дифениловом эфире) [119]. Для определения ионов щелочных металлов испытывали также электрод с мембраной из силиконового каучука, содержа-198 [c.198]

    Книга представляет собой издание, наиболее полно соответствующее программе по физической химии для студентов биологических специальностей Московского университета, а также других университетов страны. В ней изложены основы химической термодинамики, учение о химическом равновесии, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. Небольшой раздел посвящен свойствам газов, необходимым для понимания основного материала. Дается краткое описание методов хроматографии, экстракции, ректификации, использования ионоселективных электродов и т. п. [c.2]

    Ионселективные электроды делятся на группы 1) стеклянные электроды 2) твердые электроды с гомогенной или гетерогенной мембраной 3) жидкостные электроды (на основе ионных ассоциатов, хелатов металлов или нейтральных лигандов) 4) газовые электроды 5) электроды для измерения активности (концентрации) биологических веществ. [c.116]


    Многие ферменты дороги и быстро теряют свою активность. Применение бактерий, микроорганизмов и биологических тканей различного происхождения позволяет устранить недостатки, присущие ферментным биосенсорам. При этом отпадает необходимость в получении и очистке ферментов. Однако такие биосенсоры имеют низкую селективность вследствие того, что микроорганизмы, ткани растений и животных являются источниками самых разнообразных ферментов. Кроме того, время отклика биосенсоров на основе тканей и микроорганизмов может быть достаточно большим. Тем не менее, в последнее время наблюдается повышенный интерес к электродам, содержащим не сами ферменты, а их первозданные источники - биологические материалы. Установлено, что тканевые срезы выполняют функцию биокатализаторов. При этом пластины биоматериала могут храниться без потери активности в течение года. [c.504]

    В связи с анализом ультрачистых веществ п биологических объектов большое внимание уделяется и анализу растворов, полученных после соответствующей химической обработки анализируемых проб. Спектральный анализ растворов исключает ошибки, связанные с влиянием структуры, тепловой истории образца и с неравномерным распределением в нем элементов. Устраняется также фракционирование элементов, уменьшается влияние матрицы и третьих элементов на результаты анализа. Например, основа не влияет на точность спектрального определения Мп, Сг, N1 в стандартных образцах стали, бронзы и шлака (растворы шлака анализировали без кремневой кислоты) [440]. Сравнительно просто решается вопрос о приготовлении стандартов. Из существующих методов спектрального анализа растворов наибольшей абсолютной чувствительностью обладает метод сухого остатка с применением импрегнированных угольных электродов [48, 182]. [c.75]

    Следующий раздел практикума — освоение практических приемов потенциометрического метода анализа. Следует напомнить учащимся, что этот метод основан на измерении потенциала электрода, погруженного в анализируемый раствор. Значение потенциала, возникающего на электродах, зависит от состава раствора. На этой зависимости и основаны аналитические определения, выполняемые потенциометрическим методом. В практикум включены аналитические потенциометрические определения, имеющие наибольшее прикладное значение измерение концентрации водородных ионов в анализируемом растворе и потенциометрическое титрование. Потенциометрический метод определения концентрации водородных ионов широко применяется в химических, агрохимических, биологических и других лабораториях и лежит в основе действия приборов автоматического контроля и регулирования технологических процессов. Потенциометрическое титрование - вариант объемного анализа, при котором точка эквивалентности определяется по резкому изменению потенциала электрода, погруженного в раствор. Это исключает ошибки, связанные с визуальной оценкой изменения окраски индикатора, особенно в мутных или окрашенных растворах. [c.223]

    Растворенный кислород (кислород воздуха, всегда насыщающего исследуемые растворы) может восстанавливаться на индикаторных электродах (ртутном и платиновом) и тем самым мешать определению других веществ. Однако это же обстоятельство может быть использовано и для определения самого кислорода, поскольку диффузионный ток восстановления кислорода пропорционален его концентрации в исследуемом растворе. Процессу восстановления кислорода посвящено много исследований, на основании которых разработаны методы главным образом для автоматического контроля содержания кислорода в жидкостях различных природных водах и рассолах, биологических растворах, воде аквариумов и т.д. Поскольку в основе этих методов лежат полярографические приемы, т. е. непосредственное измерение высоты волны восстановления кислорода, а не титрование его каким-либо раствором,, то подробного описания этих методов в настоящей монографии не приводится. [c.186]

    Микроорганизмы могут использоваться в качестве биосенсоров и других научных инструментов. Биосенсор — это гибридный прибор, где живые организмы (органеллы, ферменты) связаны с электродами, и биологическая реакция конвертируется в электрический ток. Биосенсоры применяют при определении различных индивидуальных вешеств, поллютантов, контроля газов и жидкостей в медицине, сельском хозяйстве, экологических исследованиях и различных производствах. Примером может служить биосенсор для определения загрязнения (токсичности) на основе люциферазной системы светящихся бактерий. [c.316]

    О мембранных электродах в последние десять лет написаны сотни статей. Эти электроды привлекают исследователей тем, что с их помощью можно определять содержание веществ ионного и неионного характера в самых разных жидкостях. Для аналитических целей в различных областях науки и практики уже разработано большое число электродов многих видов и назначения. Забота о поддержании, как говорят, качества жизни , т. е. система мер, направленных на охрану чистоты окружающей среды, здравоохранение, профилактику болезней и победу над ними, — все это способствовало росту финансирования разработок селективных мембранных электродов и чувствительных устройств на их основе. С помощью этих устройств можно легко контролировать состав атмосферы и биологических жидкостей. Необходимость автоматически контролировать содержание ионных и неионных компонентов в плазме и цельной крови, поте, моче и других биологических объектах с целью диагностики различных отклонений от нормы, приводящих к заболеваниям, побудило исследователей, используя большие возможности мембранных электродов, разработать на их основе различные тонкие чувствительные устройства. Эти разработки описаны в предлагаемой книге. [c.9]


    Платиновый электрод может быть стационарным, вращающимся или вибрирующим (для сведения к минимуму диффузионных градиентов). Однако такие электроды обычно легко загрязняются при их применении для анализа биологических образцов. Эта проблема не возникает при использовании кислородного электрода Кларка [13], представляющего собой платиновый электрод, покрытый газопроницаемой мембраной. С помощью платинового электрода измеряют число, присутствующих на его поверхности молекул кислорода, главным образом на основе теории соударений. В электроде же Кларка время ответа пропорционально скорости диффузии кислорода через мембрану. В такой системе трансмембранный градиент концентрации кислорода возникает из-за того, что на поверхности электрода концентрация кислорода вследствие его потребления равна нулю. К счастью, скорость диффузии кислорода линейно зависит от его концентрации или парциального давления. Выход тока зависит также от площади платинового катода. [c.188]

    Электроды на основе биологической ткани [2—5, 45, 57]. Основным элементом конструкции этих биосенсоров является тонкий слой биологической ткани, прикрепленный к поверхности внутреннего электрода. В результате ферментативной реакции, происходяш ей в ткани, выделяются продукты, потенциалобра-зующие для этого электрода. Так, в глутаминовом электроде [c.243]

    В монографии освещены вопросы ионометрии — раздела физической химии, связанного с новыми приемами анализа и контроля различных процессов, протекание которых сопровождается изменением ионного состава растворов. Излагаются основы теории ионометрии, вопросы избирательности мембранных электродов, а также подробно обсуждаются методы измерений с ионоселективными электродами в химических, геологических, почвенных, океанографических, биологических, медицинских и других исследованиях. [c.360]

    Электрокаталитические эффекты могут оказаться весьма полезными при решении проблемы фотолиза воды видимым светом с применением биологических принципов и биологических объектов. Задача сводится к проблеме переноса электронов из электронно-транспортной цепи фотосинтеза на электроды подходящей природы. На этой основе могут быть созданы как фотоэлектрические преобразователи, так и системы фоторазложения воды на водород и кислород. [c.70]

    До появления новых типов ионоселективных влек-тродов, созданных на основе жидких ионитов и кристаллических мембран, мембранные электроды, кроме стеклянных, не имели большого практического значения из-за их низкой селективности и способности функционировать лишь в узкой области концентраций. В большинстве случаев мембранами низкой селективности интересовались специалисты по коллоидной химии, биохимии, физиологии из-за их особых свойств, объясняющих природные и биологические процессы [28]. [c.15]

    В настоящее время в медико-биологических исследованиях широко применяются Са +-электроды на основе как нейтральных лигандов, так и диалкил-фосфатов [43, гл. 2 156, с. 22]. Подробно этот вопрос изложен в [43, гл. 7 и 8]. [c.184]

    Теперь мы более или менее в состоянии рассмотреть некоторые механистические причины частотной зависимости электрических свойств систем, помещенных между электродами и включающих не только ионные растворы, но и биологические материалы. Диэлектрические (пассивные электрические) свойства биологических материалов и различных химических [206] веществ давно (см., например, [157]) привлекают внимание исследователей как с чисто познавательной, так и аналитической точки зрения. Так, например, еще в 1899 г. Стюарт [204] заметил, что низкочастотная проводимость плазмы крови превышает проводимость цельной крови, из которой она получена, на величину, являющуюся монотонной функцией гематокрита, и вывел уравнение, позволяющее по проводимости оценивать гематокрит. С тех пор по этому вопросу накоплена обширная литература. Она непрерывно пополняется, и ее объем слишком велик, чтобы дать адекватный ее обзор в этой книге. Поэтому автор хотел бы ограничиться следующими моментами 1) обратить внимание читателя на многие превосходные книги, обзорные статьи и монографии по диэлектрической спектроскопии биологических веществ 2) рассмотреть вкратце наиболее важные особенности диэлектрических дисперсий, описанные для биологических систем, механистические модели, описывающие такие системы, и соотношения между диэлектрическими свойствами и эффективным дипольным моментом молекул, для которых наблюдается дисперсия 3) описать некоторые методы анализа и приборы, используемые на практике или разработанные, в основе которых лежат измерения проводимости, диэлектрической проницаемости или их векторной суммы. Далее предполагается вкратце рассмотреть некоторые технические и методологические аспекты, которые следует учитывать при проведении измерений импеданса биологических систем, обращая особое внимание на различия между релаксационными измерениями и измерениями в широком диапазоне частот. Отсюда мы перейдем к обсуждению временного степенного анализа (фурье-анализа) в области биосенсоров вообще. И наконец, попытаемся свести вместе рассмотренные выше идеи и факты, чтобы найти новые подходы к конструированию и эксплуатации биосенсоров. [c.354]

    Электрокаталитические эффекты могут оказаться весьма полезными при решении проблемы фотолиза воды видимым светом на основе биологических принципов и биологических объектов. Задача сводится к проблеме переноса электронов из электронно-транспортной цепи фотосинтеза на электроды подходящей природьг. На этой основе могут быть созданы как [c.70]

    За период сотрудничества с фирмой Реактив создавалась благоприятная обстановка для контракта с широкими кругами видных ученых и специалистов России и Союзных Республик. В свою очередь она привела к интеграции различных отраслей наук. Особенно хочу отмеппъ применение органических реактивов в электронике, охране окружающей среды, аналитическом приборостроении, создании химических сенсоров, ион-селективных электродов и др. В рамке программы Реактив нами создано новое поколение химических сенсоров, отличающихся высокой чувствительностью, селективностью и быстродейсгвием. Механизм действия этих сенсоров, основанный на принципе Гость-хозяин , позволяет определить следовые количества (10 мг/л) сероводорода, оксидов азота и серосодержащих органических веществ и др в воздухе. На этой основе созданы малогабаритные аналитические приборы. По существу эти сенсоры имитировали свойства различных биологических систем, имеющих металлокомплексные фрагменты. [c.10]

    Изучение биологических мембран привело к разработке электродов на основе так называемых "нейтральных переносчиков" -макроциклических полиэфиров - антибиотиков (моноактин, грамицидин, валиномицин). Молекулы циклических полиэфиров содержат кольца иа атомов кислорода, энергетически способные вьшолнять роль сольватной оболочки вокруг катиона. Таким образом, происходит внедрение катиона в органическую фа у. При этом образуются подвижные заряженные комплексы, обеспечивающие катионную проводимость таких сред. Среди них наиболее известен К -селективный электрод с жидкой мембраной - раствором ва-линомицина в органическом растворителе. Коэффициенты селек-tивнo ти составляют = Ю- , = 1  [c.57]

    Мсию1 а1ярный дизайн ионофоров для различных катионов позволил сконструировать высокоселекгивные жидкостные мембранные электроды для таких биологически важных ионов щелочных и щелочноземельных металлов, как Са +, Na+ и К+. Аналитические характеристики калиевого электрода на основе производного бис-краун-эфира показаны на рис. 7.3-13. [c.407]

    Модифицированный анодным окислением алмазный электрод проявляет высокую селективность по отношению к реагирующим веществам. Это позволяет определять, например, допамин в присутствии тысячекратного избытка аскорбиновой кислоты (именно такое сочетание встречается в биологических объектах) в микромоляр-ном диапазоне концентраций. Существенно, что на поверхности свежевыращенной пленки, покрытой адсорбированным водородом, максимумы тока окисления и допамина, и аскорбиновой кислоты на потенциодинамической кривой находятся при одном и том же потенциале и сливаются. На поверхности же заполненной кислородсодержащими группами (см. выше) максимум тока окисления аскорбиновой кислоты на вольтамперограмме сдвигается в сторону положительных потенциалов, и оба максимума хорошо разрешаются (рис. 40). Функция ячейки линейна в диапазоне как относительно высоких (1-70 мкМ допамина, 1 мМ аскорбиновой кислоты), так и более низких концентраций (0,1-1 мкМ допамина, 0,1 мМ аскорбиновой кислоты) детектирование ведется, соответственно, методами вольтамперометрии и хроноамперометрии [232-234]. Аналогично, и мочевая кислота может быть определена на фоне тысячекратного избытка аскорбиновой кислоты. Эти реакции могут лечь в основу разработки т "У. -сенсоров биологически важных соединений. Напротив, при опреде- [c.69]

    Растворенный кислород (кислород воздуха, всегда насыщающего исследуемые растворы) может восстанавливаться на индикаторных электродах (ртутном и платиновом) и тем самым мешать определению других веществ. Однако это же обстоятельство может быть использовано и для определения самого кислорода, поскольку диффузионный ток восстановления кислорода пропорционален его концентрации в исследуемом растворе. Вообще процессу восстановления кислорода посвящено очень много различных исследований, на основании которых разработаны разнообразные приборы, главным образом для автоматического контроля содержания кислорода в жидкостях — различных природных водах и рассолах, в биологических растворах, в воде аквариумов и т. д. Поскольку в основе этих методов лежат полярографические приемы, т. е. непосредственное измерение высоты волны восстановления кислорода, а не титрование его каким-либо раствором, то подробного описания этих методик в настоящей монографии не приводится. Данные о методах определения и соответствующей аппаратуре можно найти в монографиях и в ряде статей, в частности, в весьма обстоятельной работе Армстронга, Хеемстра и Кинчело , в которой приведены типичные вольт-амперные кривые восстановления кислорода на платиновом электроде, заимствованные из книги Кольтгофа и Лингейна , и даны схемы применяемой аппаратуры, калибровочные кривые и номограмма, облегчающая пересчет показаний гальванометра на содержание кислорода при различных температурах исследуемой жидкости. [c.237]

    Первые опыты с биологическими топливными элементами и батареями провел в 1910 г. английский ботаник Поттер. Погружая платиновый электрод в анаэробную культуру дрожжей или Es heri hia oli, он обнаружил, что на нем образуется потенциал, отрицательный по отношению к потенциалу такого же электрода, находящегося в аэробной стерильной среде. Наг пряжение в цепи было при этом 0,3—0,5 В, а сила слабого тока составляла 0,2 мА. За последующие 50 лет было описано множество биотопливных элементов, работающих на основе Других организмов и топлив. В конце 50-х и начале 60-х годов интерес к таким устройствам у исследователей, работавших по космическим программам, сильно возрос. [c.84]

    Очевидно, что при равных pH сопоставление значений АЕ имеет тот же смысл, что и сопоставление АЕ°. В биологических работах весьма удобно проводить сравнение систем при pH 7,0 и 30° С при этих условиях потенциал водородного электрода, по отношению к которому проводят измерение Ек, отличается от потенциала стандартного водородного электрода на 7X0,060 = 0,420 в, т. е. равен —0,420 в. По отношению к этому значению потенциал кислородного электрода равен + 0,810 в. Так как изменение представляет разность между потенциалами электродов, то разность в 1,23 в заключает ре-докспотенциалы всех биохимических окислительно-восстановительных систем, лежащих в основе жизненных процессов. [c.256]

    В последние годы в связи с широким применением ионоселективных электродов (ИСЭ) в различных медико-биологических исследованиях возникла необходимость в создании миниатюрных электродов, предназначенных для введения в кровеносное русло, брюшную полость, в различные органы и ткани организма. Существенным препятствием при миниатюризации мембранных ионоселективных электродов является наличие внутреннего водного раствора. Поэтому становится все более актуальным создание ионоселективных электродов с твердым контактом. В литературе миниатюрные ИСЭ с твердым контактом и мембранаш на основе поливинилхлорида, пластифицированного органическим растворителем - пластификатором, содержащим мембраноактивное вещество, 138 [c.138]

    В первой части (8 глав) обсуждаются биологические компоненты и принципы построения на их основе различных биосенсорных систем. Наряду с классическим ферментным электродом описаны также сенсоры на основе органелл, целых микроорганизмов, растительных и животных тканей. Значительный интерес представляют главы, посвященные способам иммобилизации биокомпонентов в сенсорах и перспективным исследованиям, нацеленным на улучшение свойств биокомпонентов (прежде всего ферментов) методами генной и белковой инженерии. [c.7]

    Активно разрабатываются ИСЭ для определения кальция в биологических материалах, поскольку ион кальция играет большую роль в физиологии человека [38]. Чаще всего используют электрод на основе жидкого ионита-раствора дидецилфосфата кальция в дидецилфенилфосфонате. Рабочий диапазон концентраций такого электрода-от 10° до 10 М кальция. Электрод чувствителен к ионам кальция если требуется определить общее содержание кальция в пробе, перед измерениями необходимо разрушить комплексные соединения кальция. [c.118]

    Концентрация растворимого ферментного электрода (гл. 1) впервые была выдвинута Кларком и Лайонсом [6] в 1962 г. Однако лишь в 1971 г. была создан [50] первый работающий ферментный электрод на основе глюкозооксидазы, иммобилизованной в геле на поверхности полярографического кислородного электрода, который позволяет определять глюкозу в биологических жидкостях и тканях. Ферментные электроды могут работать и как вольтамперометрические, и как амперометрические датчики, то есть измеряется ток при приложенном постоянном напряжении. В 1969 г. Гилболт и Монталвв [19] предложили первый потенциометрический (измеряется потенциал системы без наложения внешнего напряжения) ферментный электрод для определения мочевины. С тех пор в литературе описано более ста различных электродов данные [c.120]

    Для определения L-тирозина в биологических жидкостях опробован [25] сенсор на основе СОг-электрода, покрытого тирозиндекарбоксилазой. Электродная функция этого сенсора линейна в диапазоне концентраций 2,5 М, а его время [c.127]

    Ферменты, принимаюшие участие в окислении или восстановлении биологических молекул (оксидоредуктазы), либо содержат в активном центре группу, которая может окисляться/восстанавливаться, например железо, медь, флавин или хинон, либо выполняют свою биологическую роль совместно с каким-либо редокс-кофактором, например ЫАВ(Р) . Из-за трудности осуществления прямой электрохимической реакции между редокс-центром и голым электродом и отсутствия эффективных электро-каталитических поверхностей для рециклирования восстанавливаемого кофактора в первых ферментных электродах электрохимические процессы лишь косвенно влияли на активность фермента. Классическим примером является сенсор глюкозы па основе фермента глюкозооксидазы и полярографического кислородного электрода, предложенный Кларком и Лайонсом [15] в 1962 г. и усовершенствованный Апдайком и Хикссом [54] в 1967 г. (гл. 1). Глюкозооксидаза представляет собой РАВ-содержащий фермент (рис. 15.1), катализирующий окисление глюкозы в глюконовую кислоту  [c.212]

    Взаимодействие цитохрома с с модифицированным дипиридилом золотым электродом протекает, по-видимому, с участием лизиновых остатков на поверхности белка, образующих водородные связи с одним из атомов азота в промоторе. В основе этого предположения лежит сходство поведения рассматриваемой электрохимической системы и цитохрома с при белок-белковом электронном обмене. Известно, например, что полилизин ингибирует реакцию между цитохромом с и его биологическим партнером-цитохромоксидазой. При добавлении полилизина в электрохимическую ячейку, содержащую цитохром с и модифицированный дипиридилом электрод, гетерогенный перенос заряда также ингибируется. Сходным образом модификация поверхностных боковых цепей цитохрома с в равной степени ингибирует как электрохимическую стадию переноса заряда, так и реакцию с цитохромоксидазой [11, 26, 43]. [c.220]


Смотреть страницы где упоминается термин Электрод на основе биологической: [c.243]    [c.712]    [c.160]    [c.65]    [c.19]    [c.462]    [c.330]    [c.136]    [c.2]    [c.6]    [c.86]    [c.336]    [c.485]    [c.19]    [c.206]    [c.221]   
Ионо-селективные электроды (1989) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электрод на основе биологической с ферментным реактором

Электрод на основе биологической сравнения

Электрод на основе биологической ткани



© 2025 chem21.info Реклама на сайте