Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установление различных типов химической связи

    Установление различных типов химической связи [c.158]

    Нахождение равновесных решений для реагирующей газовой смеси по минимуму /-функции позволяет рассмотреть со статистической точки зрения вопросы, связанные с обратимостью химических реакций. В частности, интересен вопрос о связи макроскопического закона действующих масс [68] с принципом микроскопической обратимости элементарных процессов. Этот вопрос неоднократно обсуждался в литературе в связи с различными задачами. Указанный принцип, как, например, отмечалось в [25], не только достаточен, но в некотором смысле и необходим для установления распределения типа распределения Больцмана". Именно такая задача и рассматривается ниже. [c.28]


    Для установления типа гликозидной связи (а- или Р-) применяют методы ферментативного гидролиза различными гидролизующими ферментами (гидролазами), мягкий кислотный гидролиз и лр. ИК-спектроскопию используют для установления конфигурации гликозидной связи, наличия в макромолекуле полисахарида тех или иных функциональных групп, а также для изучения водородных связей. В последние годы для изучения химического строения полисахаридов все большее значение приобретает метод С-ЯМР-спектроскопии. [c.283]

    Горным бюро США была предложена так называемая химическая классификация нефтей, в основу которой положена связь между плотностью и углеводородным составом нефтей. Исследованию подвергают фракцию, перегоняющуюся при атмосферном давлении в интервале 250—275°С (характерная фракция легкой части нефти), и фракцию, перегоняющуюся при остаточном давлении 5,3 кПа в пределах 275—300 °С (характерная фракция тяжелой части нефти). Определив плотность обеих характерных фракций, легкую и тяжелую части нефти относят к одному из трех классов соответственно границам, установленным для нефтей различных типов (табл. 2.1). Затем на основе данных о характерных фракциях определяют, к какому из семи классов должна быть отнесена нефть (табл. 2.2). Недостатки этой классификации — в известной условности границ плотностей характерных фракций и в том, что обозначения отдельных классов не отражают действительного состава нефти. [c.31]

    Наибольшая достоверность в установлении вида превращений молекулы на поверхности может быть достигнута при изучении всего спектра поверхностных соединений и адсорбированных молекул, позволяющего обычно установить факты сохранения или разрушения их структуры, а также установить тип связи между молекулой и соответствующим центром на поверхности адсорбента. Однако провести исследование всего спектра во многих случаях не удается вследствие рассеивания инфракрасной радиации и наложения полос поглощения остова адсорбента и адсорбированной молекулы (см. главу П1). Представляющие большой интерес исследования в далекой инфракрасной области, в которой могут проявляться полосы молекулярной (не химической) связи адсорбированной молекулы с поверхностью, только начинаются и сталкиваются с большими методическими трудностями. В результате всего этого недостаточно полные спектральные исследования адсорбции, проведенные без должного учета химических и адсорбционных данных, часто не позволяют делать окончательные выводы о преимущественной роли молекулярной или химической адсорбции и об участии в адсорбции различных центров на поверхности адсорбентов. [c.189]


    Имеются интересные наблюдения по влиянию типичных лигандных соединений на гетерогенный катализ [70]. Применение квантовохимической теории химических связей в комплексных соединениях качественно подвело теоретические основания под наличие общих механизмов. Но здесь, по-видимому, имеют место слишком большая схематизация явлений и игнорирование специфики, имеющейся в гетерогенном и гомогенном катализе. Если раньше переоценивали эту специфику и считали гетерогенный газовый катализ и гомогенный катализ в растворах принципиально различными по механизму, то здесь часто имеет место другая крайность игнорирования специфических различий между этими двумя типами катализа. Между тем эта специфика имеется. Можно назвать установленные точно различия в активности и селективности каталитического действия граней разных индексов, отсутствующих у комплексов, а также участие структур с аномальной валентностью и с нарушением стехиометрии в гетерогенном катализе. Имеются и свои специфические структуры и процессы у координационных соединений в растворе. Поэтому проблема состоит не в установлении весьма маловероятного тождества этих двух типов катализа, а в выяснении, в каких случаях и как далеко заходит сходство механизмов катализа в разных фазах и в чем заключается специфика каталитического действия кристаллических катализаторов и комплексных растворенных соединений. Это в значительной мере вопрос о роли в катализе процессов, действие которых локализовано около одного атома (иона) [или около небольших групп атомов (ионов) и их лигандов] и процессов, в которых прямо или косвенно участвуют макроструктуры твердого тела. Относительное [c.49]

    Шаростержневые модели молекул очень полезны в том отношении, что они делают наглядным относительное положение атомов в пространстве, но они перестают удовлетворять, как только хотят показать, каков размер атомов. Действительно, атомные радиусы настолько велики по сравнению с длинами химических связей, что в том случае, когда модель молекулы, подобной хлористому метилу, конструируется с учетом реальных атомных радиусов и длин связей, связи, соединяющие атомы, трудно увидеть. Тем не менее масштабные модели такого типа, сделанные из усеченных шаров (Стюарт, Фишер — Хиршфельдер и др.), соединяемых между собой кнопками, широко используются для установления возможной степени сближения групп в молекуле и определения степени перекрывания атомов при их различном расположении (рис. 1-6). [c.27]

    Современные научные данные об атомной архитектуре химических веществ получены главным образом в результате рентгеноструктурного изучения кристаллов. Ранние рентгенографические исследования привели к установлению структур многих элементов и простых соединений, а также к разработке важных основных принципов, таких, например, как различия между молекулярными и немолекулярными кристаллами. При этом было установлено, что имеются существенные различия в силах, приводящих к образованию химической связи и удерживающих атомы вместе в различных типах веществ. По мере развития техники рентгеноструктурного анализа появилась возможность определения структуры все более сложных соединений, что в конце концов позволило расшифровать структуры молекул белка, построенных из тысяч атомов. Параллельно с прогрессом в этом направлении была повышена и точность определения истинных межъядерных расстояний и валентных углов между атомами в молекулах, что позволило сформулировать точные принципы, относящиеся к структуре молекул. [c.769]

    А. В. Сторонкин с сотрудниками проводит систематические исследования по разработке термодинамической теории многокомпонентных п>3) двух- и многофазных систем различных типов (жидкость — пар, жидкость — жидкость, твердая фаза — жидкость, жидкость — жидкость — пар, твердая фаза — жидкость — пар, твердая фаза — твердая фаза — жидкость и т. д.). В их основу положены уравнения, являющиеся обобщением дифференциального уравнения Ван-дер-Ваальса для бинарных систем, критерием устойчивости фаз Гиббса относительно бесконечно малых изменений состояния, а также найденные критерии устойчивости гетерогенных систем в целом. Отметим следующие результаты установление условий и границ применимости законов Д. П. Коновалова и М. С. Вревского к многокомпонентным системам вывод закономерностей, описывающих ход складок на поверхностях давления и температуры сосуществования фаз и установление правил, позволяющих предсказывать области расположения составов гомогенных и гетерогенных азеотропов и тройных эвтектик по данным о бинарных системах выявление связи между формой изотермо-изобарных кривых составов и изменениями химических потенциалов при фазовых процессах и установление пра- [c.70]


    Пиролиз целлюлозы сопровождается сложными физико-хими-ческими процессами. Под влиянием теплового воздействия происходят структурные превращения, снижение СП, многочисленные параллельно и последовательно протекающие реакции, приводящие к образованию разнообразных промежуточных и конечных продуктов. Термическая деструкция относится к числу наиболее сложных и недостаточно изученных превращений полимеров. Целлюлоза представляет собой гетероциклический полимер, обогащенный относительно лабильными к тепловым воздействиям гидроксильными группами это вносит дополнительные трудности при изучении закономерностей ее термического распада. В результате многочисленных исследований накоплен обширный экспериментальный материал, установлен ряд бесспорных фактов, однако их трактовка в большинстве случаев затруднена в связи со сложностью и многообразием протекающих процессов. Особенно большие трудности встречаются при попытках представить термическую деструкцию целлюлозы в виде конкретных химических реакций. Как обычно, в подобных случаях существуют различные гипотезы и точки зрения, которые авторы пытаются увязать с экспериментальными данными. Дать точное химическое описание термической деструкции целлюлозы, видимо, вообще невозможно. При современном состоянии этой проблемы установление основных типов реакций, позволяющих хотя бы качественно объяснить наблюдаемые закономерности, следует рассматривать как один из важных этапов развития этого раздела химии целлюлозы. Механизм деструкции, как указывалось ранее, зависит от структуры целлюлозы, характера среды, наличия катализаторов, условий нагрева и других факторов. [c.74]

    В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств. [c.10]

    Форма подобной закономерности для полупроводников типа А Ш и всех других, им изоэлектронных, в настоящее время не установлена. Выяснение этого вопроса, с нашей точки зрения, должно идти двумя путями 1) установлением формы зависимости АЕ от степени металлизации и ионности связи в ряду изоморфных соединений, отличающихся друг от друга только природой входящих в состав соединения компонент 2) поиском закономерностей изменения физических свойств в ряду соединений, образованных атомами одного и того же типа, но имеющих различный состав и структуру, а следовательно, и природу химической связи. [c.35]

    Рентгенофлуоресцентный метод весьма эффективен при опреде,]гении химического состава растительного материала в связи с исключительной быстротой определения содержания ряда различных элементов и в некоторых случаях возможностью исключения озоления образца [44]. Исиользование этого метода требует применения эталонных образцов, состав которых установлен другими (обычно химическими) методами. Для большей точности эталонные кривые должны быть построены для каждого значительно отличающегося типа растительного материала, поскольку влияние основы на рассеянное излучение может сильно колебаться в разных материалах. [c.67]

    Горным бюро США была предложена так называемая химическая классификация нефтей, в основу которой положена связь между плотностью и углеводородным составом нефтей. Исследованию подвергают фракцию, выкипающую при атмосферном давлении в интервале 250— 270 °С (характерная фракция легкой части нефти), и фракцию, перегоняющуюся при остаточном давлении 5,3 кПа в пределах 275—300 °С (характерная фракция тяжелой части нефти). Определив плотность обеих характерных фракций, легкую и тяжелую части нефти относят к одному из трех классов соответственно границам, установленным для нефтей различных типов (табл. 4.1). [c.186]

    Основная задача теоретической органической химии — установление общих законов химического поведения органических соединений в зависимости от их строения. Знание этих законов позволяет предвидеть заранее, исходя из строения исходных продуктов, возможные пути химической реакции, характер и строение конечных продуктов реакции и их свойства. В настоящее время стало очевидным, что свойства и реакционная способность органического соединения обусловлены не только типом и характером присутствующих в нем связей, что зависит от типа и характера взаимодействия атомных орбиталей (АО), образующих эти связи, но также типом и характером взаимодействия АО и (или) молекулярных орбиталей (МО) внутри соединения и взаимодействием между АО и (или) МО различных соединений (например, между растворителем и растворенным веществом, между реагирующими частицами, между катализатором и субстратом). Поэтому прежде чем обсуждать реакционную способность органических соединений и механизмы органических реакций, необходимо ознакомиться с важнейшими свойствами и типами взаимодействия АО и МО. [c.7]

    Одной из основных проблем, свойственной всем исследованиям поперечных химических связей в белках, является установление наличия этих связей, их количества и распределения в сетчатой структуре. Эта проблема актуальна также и для всей химии полимеров, в частности для таких продуктов, как вулканизованный каучук, модифицированные целлюлозные материалы, регенерированные белковые волокна и различные типы пластмасс. Поскольку интерпретация результатов исследования различных реакций образования и расщепления поперечных связей будет дана на основании методов, используемых для определения этих связей, ниже кратко рассматриваются те методы, которые оказались наиболее ценными при исследовании шерсти. [c.395]

    А. Кекуле в статье О конституции и метаморфозах химических соединений и химической природе углерода высказал правильную мысль о четырехвалентности углерода и способности его атомов к цепеобразной связи друг с другом. А. Кекуле, однако, в общем остался на позициях теории типов. Это видно из того, что рациональные формулы для А. Кекуле — это по-прежнему только формулы превращений, что для одного вещества он допускал возможность многих формул, отрицал возможность познать строение молекул. При этом множественность формул А. Кекуле считал не временным следствием недостаточности знаний, а явлением постоянным, неизбежным. Он прямо говорил о том, что если бы наука в дальнейшем нашла способы установления строения молекул, то и после этого различные рациональные формулы (формулы превращений) все еще были бы допустимы, так как созданная определенным образом расположенными атомами молекула в различных условиях может расщепляться по-разному, в разных местах...  [c.24]

    Термин поляризация и его различные производные, такие как поляризованный, поляризуемый и неполяризуемый электроды, используется независимо от того, какая причина обусловливает отклонение Е от , =о- Возникновение поляризации может быть связано с химическими или физическими изменениями электродов, вызванными прохождением через них тока, с замедленной скоростью переноса вещества к электроду, медленным внедрением ионов в кристаллическую решетку или с медленным выводом их из нее. Имеются и другие причины поляризации, например, замедленный перенос заряда или низкая скорость химической реакции, предшествующей его переносу. Величина поляризации зависит также от омического сопротивления раствора и сопротивления внутри диффузионного слоя. Поляризацию можно измерить, и она не зависит от природы потенциала ,=о, который не обязательно должен быть равновесным. Если ,=0 равен равновесному значению потенциала Е и обусловлен установлением на электроде равновесия типа Ох + ие Red, то в этом случае поляризация называется перенапряжением (т])  [c.134]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]

    Установление строения. Для установления строения линейных Б. (белков, нуклеиновых к-т и линейных полисахаридов) необходимо, помимо определения мономерного состава Б. и установления типа связи между мономерными звеньями, выяснить последовательность, в к-рой эти звенья расположены в полимерной цепи. Принципиальный подход к решению этой задачи достаточно хорощо разработан он состоит в специфич. (ферментативном илн химическом) расщеплении Б. по крайней мере двумя различными способами, разделении полученных фрагментов и установлении последовательности мономерных звеньев в них (при этом существенное значение имеют методы, позволяющие последовательно отщеплять мономерные звенья с копца цепи). Затем на основании данных о структуре полученных фрагментов судят об исходной структуре Б. Для однозначной [c.129]

    Для установления зависимости между строением тиофосфатов и константой таутомерного равновесия было использовано уравнение Гамметта, связывающее константы заместителей а с константами ионизации кислот. В связи с тем что кислотные таутомерные формы, например I и И, относятся к различным химическим типам, то уравнение Гамметта для них запишется по-разному [c.184]

    Вторжение электрона в катализ началось еще в конце второго десятилетия нашего века. К этому периоду относятся работы Л. В. Писаржевского, идеи которого оказали значительное воздействие на направление теоретических исследований в области катализа. Л. В. Писаржевский предполагал, что каталитическая активность металлов непосредственно связана со свободными электронами в металле, удары которых, как он думал, могут активировать молекулы реагирующих веществ. В настоящее время ряд трудных теоретических вопросов катализа успешно разъяснен с помощью электронных представлений о структуре твердых тел. Две существенные особенности гетерогенного катализа сыграли роль отправных точек для развития электронной теории катализа. Первая заключается в том, что огромное число активных твердых катализаторов — это металлы переходного типа или полупроводники, вторая — бесспорно установленный факт тесной связи между активностью и неоднородностью поверхности катализатора. Различные дефекты кристаллов катализаторов — химические и физические — не только сильно влияют на активность, но, как правило, и являются теми местами, на которых развертывается каталитический процесс. Химические дефекты возникают, например, при внедрении атомов примеси в кристаллическую решетку основного вещества физические дефекты получаются в результате разнообразных нарушений правильного пространственного расположения атомов в решетке. В отдельных узлах иногда отсутствуют атомы — решетка имеет пустые узлы. В других случаях атомы смещаются в междуузлия или образуют дополнительные скопления на поверхности и т. д. [c.439]

    За свою более чем полуторавековую историю структурная химия достигла поистине поразительных результатов. Уст 1-новлено строение и открыты пути синтеза сложнейших природных соединений — терпенов, углеводов, пептидов п белков, нуклеиновых мислот, стероидов, антибиотиков, витаминов и коферментов, алкалоидов. Созданы научные основы препаративного органического синтеза самых разнообразных соединений. И, конечно, все эти успехи вовсе не означают того, что структурная химия достигла потолка. Нет, дальнейшие перспективы ее развития безграничны. Они состоят в поисках новых зависимостей между валентностью (реакционной способностью) свободных атомов и структурой образуемых из них частиц, новых корреляций между различными видами химических связей в результате более эффективных методов количественного обсчета многоэлектронных систем, в установлении новых форм химических соединений типа ферроцена, бульвалена, В севоэмож)Ных элементоорганических соединений, в частности фто-руглеродов и их производных. [c.100]

    Ионизация. Существует эмпирическое соотношение между константами ионизации и димеризации карбоновых кислот. В общем случае обе константы возрастают параллельно, как это видно из рис. 14, заимствованного из работы Аллена и Калдина [25]. Более подробное исследование алифатических аминов и производных пиридина было выполнено Тамресом с сотрудниками [1996]. На рис. 15 приведена установленная ими зависимость между р/Са и величиной теплоты смешения с СНС1з. Из рисунка видно, что связь между ионизацией и комплексообразованием в растворе не может быть представлена единственным соотношением. Эмпирические уравнения получаются различными, в зависимости от типа химических соединений и их структурных особенностей. Например, производные пиридина не подчиняются закономерностям, которым следуют алифатические амины. [c.46]

    Энергия, поглощенная в микроскопических центрах, вызывает локальный перегрев, известный как тепловой клин . Однако в шпорах, в которых выделяется энергия порядка 100 эв, избыток температуры уже падает до 1° за время около 10" сек [170]. Термическая диффузия может быть представлена уравнением (3.7), в котором коэффициент тепловой диффузии заменяется на D, а Q d p — на п — плотность Ср — удельная теплоемкость ос— константа теплопроводности и 9 — поглощенная энергия). Коэффициент тепловой диффузии для жидкого бензола составляет около 10" см /сек, т. е. примерно в 100 раз больше, чем коэффициент само-диффузии для молекул бензола. Соответственно за 10 сек радиус р сферической термической области в жидком бензоле уже будет 200 А, если может быть применен макроскопический коэффициент диффузии. В ионизационных треках, в которых перекрываются шпоры, в результате суперпозиции возникает более высокая температура, и вследствие цилиндрической симметрии области это состояние поддерживается более длительное время (рис. 3.1). Между тем за интервал времени 10" сек микроскопическое распределение энергии нельзя рассматривать как равновесное, и использование температурной концепции становится до некоторой степени сомнительным (может быть, даже необходимо предположить разные температуры для различных типов реакций). Поэтому, в случае когда наблюдаемые интервалы времени не достаточны для установления теплового равновесия, система лучше описывается определениями, использованными в модели II. Комбинация моделей II и III была подробно рассмотрена Кобаяши и др. [152], постулировавшими, что при дезактивации возбужденных молекул путем соударения химические связи реакционного центра сильно деформированы. Это, естественно, будет вызывать химические реакции в таких областях. [c.79]

    Молекулярные силы, обусловливающие явления капиллярности, тождественны с силами, вызывающими как явления адгезии и когезии, так и химическое взаимодейс вие и растворение. В большинстве случаев силы молекулярного притяжения в жидкостях принадлежат к типу ван-дер-ваальсовых сил на них, однако, нередко налагаются чисто электростатические силы притяжения и отталкивания — в особенности в тех случаях, когда в молекулах присутствуют электролитически диссоциированные группы. В случае твёрдых поверхностей, как природа, так и величина когезионных сил определяются главным образом силами типа ковалентной связи. Величина и распределение всех этих сил вокруг молекул зависят не только от формы молекул, но также и от природы и расположения различных химических групп в молекулах. И поскольку выражение форма молекул является лишь удобным условным термином для передачи, например, понятия контура поля сил отталкивания, связанных с атомами, образующими молекулы, то в конечном итоге в законченной теории химических свойств поверхности следует учитывать все виды силовых полей вокруг молекул. В настоящее время структурная тсория органической химии является источником ценных сведений по этому вопросу, так ка с можно считать установленным, что структурные фо мулы, вошедшие в употребление в течение последних рёх четвертей столетия, определяют с большой точностью не только химические свойства, но и истинную форму и механические свойства молекул. Явления, рассматриваемые в следующей главе, особенно ясно показывают связь м жду некоторыми капиллярными свойствами и химическим строением. [c.30]

    Производится оби]ирный поиск пестицидов новых типов. Основной подход к поиску новых препаратов включает в себя следующие методы 1) эмпирический синтез и стандартньп скрининг (испытание на биологических объектах) 2) синтез аналогов известных синтетических и природных препаратов, установление связи между их структурой и физиологической активностью 3) химическое моделирование на ос-1юве изучения метаболизма и механизма действия различных, классов химических соединений. [c.385]

    Механизм реакциий типа 5 2 может существенно отличаться от реакций нуклеофильного замещения типа 5л 2. Это рбусловлено тем, что при реакциях нуклеофильного замещения в поле углеродного атома, около которого осуществляется химический процесс, имеется 4 электрона, при электрофильном же замещении только два, принадлежащие С—металл-связи реагирующей молекулы. Вследствие этого при электрофильном замещении возможно установление двух различных переходных состояний — I и II [77]. В случае I электронное облако двух электронов (связи С—металл) имеет форму р-облака и, следовательно, находится по обе стороны углеродного атома, у которого происходит замещение. Такое переходное состояние подобно переходному состоянию при процессе 5л/2, и в результате реакции электрофильного замещения также образует продукт с обращенной конфигурацией. Если же реакция электрофильного замещения протекает через переходное состояние II, [c.328]

    Аналогичные выводы были сделаны и Тамеле [152], который адсорбировал на катализаторах крекинга аммиак. Тамеле [152] также проводил титрование н-бутиламином алюмосиликатного катализатора, суспендированного в такой иеводной среде, как бензол, и сравнивал силу этой кислоты и ряда других кислот (сила которых в водной среде известна) в бензоле, титруя их различными основаниями. Оказалось, что по кислотности алюмосиликатный катализатор сравним с очень сильными кислотами, но, однако, количество этой кислоты (число кислотных центров, приходящееся на единицу площади поверхности катализатора) очень невелико. Содержание водорода в катализаторах крекинга имеет некоторое значение при установлении связи между кислотностью и химической природой кислотных центров катализатора Совершенно ясно, что после прокаливания при 800° на поверхности катализатора не остается никакой воды, однако водород присутствует в виде гидроксильных грунн, связанных с атомами кремния или алюминия кристаллической решетки. И этого водорода более чем достаточно, чтобы кислотность катализаторов можно было объяснить образованием кислот бренстедов-ского типа. [c.367]

    Обратимся теперь к современной стереохимии. Рассмотрим в первую очередь ее, если можно так сказать, параметрический аспект. Методы изучения геометрии молекул дали очень много материала по межатомным расстояниям и валентным углам. В связи с этим появились феноменологические обобщения этого материала при помощи эмпирических формул, путем установления зависимостей между этими параметрами и типами и подтипами связей, а также посредством аддитивных схем, построенных на понятиях ковалентного и вандерваальсова радиуса. Те же физические методы исследования позволили установить, например, и строение наиболее устойчивых поворотных изомеров, обусловленных существованием потенциалов торможения вокруг простой С — С- связи, и даже величину этих потенциалов. С другой стороны, те же методы вместе с совокупностью данных, полученных химическими способами исследования, позволили далеко продвинуть вперед учение о конформациях циклогексана, его производных и других алициклов и подготовить почву для введения конформационного анализа, занимающегося изучением Зависимости свойств молекул от строения преимущественных конформаций. Далее, было установлено искажение требуемого классическими или даже электронными теориями копланарного строения многих типов соединений. Сюда относится отступление от копланарности алициклов — циклобутана и циклопентана — и молекул с сопряженной системой связей, причем характер такого искажения,например,в случае дифенила,бензфенантрена,гексаметилбензола и их аналогов неодинаков и обусловлен игрой различных структурных факторов. Характерной чертой, в буквальном смысле слова, современной стереохимии является также изучение пространственного строения органических радикалов и ионов, а также, хотя и в меньшей степени — здесь больше гипотез, и переходных комплексов. [c.353]

    Рассмотрение классов в той или иной мере химически однотипных реакций и сопоставительное изучепие условий их протекания служат основой для формулировки гипотез и закономериостей, касающихся связи между строением и реакционной способностью органических соединеиий. К установлению и использованию таких закономерностей и сводятся так называемые химические (структурные) аналогии, которыми химики-органики руководствуются при решении самых различных задач. Поэтому информационно-поисковые задачи этого типа представляют первостепенный интерес как для химиков-синтетиков, решающих проблемы выбора путей синтеза соединений, так и для исследователей, занимающихся теоретическим обосиовапием и прогнозированием закономерностей реакционной способности соединений. [c.191]

    Изучение этих специфических форм и корреляций между их химическим и электронным строением, с одной стороны, и их реакционной способностью, с другой — одна из центральных задач теории катализа. В сколько-нибудь общем виде она пока далека от разрешения, хотя можно считать установленной роль определенных форм в отдельных группах реакций. Так, например, при изучении различных органических реакций на алюмосиликатных катализаторах на основании химических данных довольно давно пришли к выводу о существовании на их поверхности бренстедтовских протонных и люисовских апротонных кислотных центров. При катализе промежуточно образуются хемосорбированные карбониевые ионы и комплексы, связанные с поверхностью водородными и акцепторно-донорными связями. Колебательные, электронные и ЭПР- овские спектры хемосорбированных молекул на алюмосиликатах, особенно обстоятельно изученные в Советском Союзе Терениным и его сотрудниками [191 и за рубежом Лефтиным с сотрудниками [201, подтвер- дили эти выводы. Они показали, что при хемосорбции на этих катализаторах в зависимости от характера акцепторно-допорных свойств молекул (и от наличия протонных центров или их замещения ионами щелочных металлов) образуются типы поверхностных соединений, указанные на следующей схеме  [c.52]


Смотреть страницы где упоминается термин Установление различных типов химической связи: [c.10]    [c.103]    [c.483]    [c.35]    [c.483]    [c.199]    [c.440]    [c.313]    [c.132]    [c.41]    [c.313]   
Смотреть главы в:

Кристаллохимия Издание 2 -> Установление различных типов химической связи




ПОИСК





Смотрите так же термины и статьи:

Различные типы химической связи

Химическая связь

Химическая связь связь

Химический связь Связь химическая

типы связ



© 2025 chem21.info Реклама на сайте