Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Намагниченность, вектор

Рис. 1.2. Вектор суммарной ядерной намагниченности М, прецессирую-щий вокруг вектора В Рис. 1.2. Вектор суммарной <a href="/info/142507">ядерной намагниченности</a> М, прецессирую-щий вокруг вектора В

Рис. 8.2. Схематическое изображение прецессии результирующего вектора ядерной намагниченности М в постоянном магнитном поле На. Рис. 8.2. <a href="/info/376711">Схематическое изображение</a> прецессии <a href="/info/825195">результирующего вектора</a> <a href="/info/142507">ядерной намагниченности</a> М в <a href="/info/477563">постоянном магнитном</a> поле На.
    Намагниченность (вектор намагничения, момент) 11, 60, 179 [c.380]

    Намагниченность вещества характеризуется вектором намагниченности , численное значение которого равно магнитному моменту единицы объема  [c.139]

    Магнетики делятся на диа-пара- и ферромагнетики. Количественной характеристикой магнетиков является вектор намагниченности М (аналогичный вектору поляризации Р диэлектриков), определяемый выражением [c.38]

    Величина вектора намагниченности, очевидно, аналогична вектору поляризации. Наличие вектора намагниченности означает, что элементарный объем горной среды, попадая во внешнее магнитное поле, создает свое собственное магнитное иоле. В первом приближении наблюдается прямо пропорциональная зависимость между векторами намагниченности и суммой напряженностей внешнего п собственного магнитных полей  [c.140]

    Определение времени спин-решеточной релаксации. Для измерения Г, применяют так называемую импульсную последовательность 180°, т, 90° (т —задержка между 180 п 9Ь°-ными импульс ь ми) 180°-ный импульс поворачивает вектор намагниченности М вдоль оси 2, далее следует релаксация намагниченности от значения —Мо до М. Последующий 90°-ный импульс поворачивает вектор [c.257]

    Ц процесс вращения вектора намагниченности [c.30]

    В последнее время магниторезистивный эффект широко используется в пермаллоевых тонкопленочных преобразователях магнитного поля. Активное электрическое сопротивление тонкопленочного анизотропного пермаллоевого слоя зависит от угла между направлениями векторов намагниченности пленки и тока в ней. Техническая реализация пермаллоевых магниторезисторов открывает широкие возможности их миниатюризации. [c.121]

    Комбинированное намагничивание осуществляется при одновременном намагничивании детали двумя или несколькими изменяющимися магнитными полями. При этом можно применять любое сочетание видов тока. При комбинированном намагничивании необходимо, чтобы суммарный вектор намагниченности поворачивался относительно оси детали хотя бы на 90°. Эго достигается в результате применения совместного продольного [c.159]


    К этому же типу установок относятся схемы, в которых разделены функции возбуждения высокочастотного поля и приема ядерного резонанса. Для этой цели служат две катушки, оси которых расположены под прямым углом друг к другу и к направлению постоянного магнитного поля. Одна из них (передающая) связана с генератором и создает высокочастотное магнитное поле. При удовлетворении условия резонанса результирующий вектор ядерной намагниченности М начинает прецессировать вокруг направления Яо (рис. 8.2), При этом вращающийся компонент наводит э.д.с. в приемной катушке. Основная компенсация в таких системах достигается за счет перпендикулярного расположения катушек. [c.219]

    В названной модели рассматривается вектор макроскопического магнитного момента (намагниченности), представляющего векторную сумму отдельных ядерных моментов  [c.12]

Рис. 91. Поворот вектора намагниченности М под действием 90-градус-иого импульса (а) и спад вектора памагииченности М при расхождении магнитных моментов (б) Рис. 91. <a href="/info/466316">Поворот вектора</a> намагниченности М под действием 90-градус-иого импульса (а) и спад вектора памагииченности М при расхождении магнитных моментов (б)
    Когда вектор суммарной намагниченности М поворачивается вокруг оси X во вращающейся системе координат (см. рис. 1.2), происходит затухание индуцированных компонент Мх. Му (Мх.) и так называемого сигнала спада свободной индукции (ССИ), как показано на рис. 1.4. Величина Мх представляет [c.14]

    При этом в интервале Ау найдется частота, совпадающая с резонансной vo, т. е. произойдет поворот вектора намагниченности в [c.45]

    Вследствие равномерного распределения векторов по поверхности конусов равнодействующая каждого из них направлена вдоль общей оси. Поскольку на нижнем энергетическом уровне есть некоторый избыток ядерных спинов, суммарная составляющая обоих конусов, которую называют макроскопической ядерной намагниченностью М , будет отличаться от нуля. Вектор Мд совпадает с осью конуса прецессии и будет направлен в сторону приложенного магнитного поля Нд. Таким образом, внешнее магнитное поле вызовет появление макроскопической ядерной намагниченности образца. Расчет показывает, что при комнатной температуре ее величина имеет порядок 10 от величины приложенного поля. В состоянии насыщения поверхность обоих конусов заполнена ядерными векторами одинаково, поэтому макроскопическая ядерная намагниченность в этом случае равна нулю. [c.26]

    Если ядерные магнитные моменты слабо взаимодействуют между собой, то макроскопическая ядерная намагниченность представляет собой сумму векторов магнитных моментов всех ядер, поэтому аналогично уравнению (21) можно записать [c.27]

    Уравнения (28), (29) и (30) описывают поведение вектора макроскопической ядерной намагниченности М при воздействии поля Яо и релаксационных процессов. [c.29]

    Среди парамагнетиков имеются вещества, обладающие ферромагнитными свойствами, для которых указанная прямая пропорциональная зависимость между векторами намагниченности и напряженности, строго говоря, не соблюдается. Для них характерен гистерезис намагничивания, который заключается в том, что с ростом напряженности внешнего иоля намагниченность растет, достигая насыщения. Однако при снятии напряженности внешнего поля намагниченность уменьшается ио другой, гнстеризисной кривой. Когда напряженность внешнего поля становится равной нулю, намагниченность не исчезает, а приобретает определенное для данного вещества значение, которое называется остаточной намагниченностью. [c.140]

    Если такой спиновой ансамбль облучать радиочастотным полем Я, таким образом, чтобы его магнитный вектор вращался в плоскости ху в направлении прецессии ядерных моментов, т. е. перпендикулярно вектору Яо, и частота удовлетворяла соотношению Vb4 = vq (условие резонанса), то происходит поглощение энергии радиочастотного поля. В соответстнии с распределением Больцмана в направлении поля Яо будет ориентировано большее число ядер, чем в иротивоположном направлении. В результате такого распределения состояний в образце создается намагниченность Л/, направленная вдоль оси 2. [c.255]

    Время Гг, характеризующее передачу энергии между связанными частицами, называют временем сиин-сииновой релаксации. Поскольку относительные фазы ядер изменяются за время (А ) , то для снинового обмена требуется интервал времени такого же порядка. Этот процесс вызывает дальнейшее уширение резонансной линии на величину Ядок- Время спин-сииновой релаксации можно определить так же, как время фазовой памяти состояния ядерного сиина. Время 7г называют также временем поперечной релаксации, поскольку оно характеризует степень уменьшения поперечных компонент вектора намагниченности. [c.256]

    При обсуждении импульсных методов удобно относить движение вектора намагниченности в снсте.ме координат, вращающейся относительно Яо в наиравлении ирецессирующих ядерных моментов. Такая система координат удобна для объяснения поведения вектора намагниченности при облучении системы ядерных сПинов коротким радиочастотным импульсом, магнитный вектор которого перпендикулярен вектору Яо и вращается с частотой м (рад/с). Во вращающейся системе координат вектор намагниченности ядерных спинов прецессирует вокруг некоторого фиктивного поля Яф, обусловленного вращением. При резонансе Я( , компенсирует поле Яо-Вектор намагниченности М взаимодействует только с Я,, лежащим в плоскости ху (рис. 91). Такое взаи.модействие приводит к тому, что вектор намагниченности М в ходе прецессии повернется за время облучения t иа угол, равный [c.257]


    Наиболее подходящей для сравнения со многими реальными ферромагнетиками яв.пяется модель Гейзинберга. В этой модели частицы в узлах решетки, например, вектор атомного магнитного момента, может принимать любую ориентацию. В трехмерной модели Гейзинберга для ферромагнетика вектор намагниченности характеризуется тремя независимыми компонентами, п=3. Теоретически параметр порядка может иметь бесконечно большое число компонент. Практически, анализ магнитной структуры антиферромагнетика МпО пока ы-вает, что параметр порядка имеет 8 компонент. [c.26]

    Процесс смещения границ с увеличением намагничивающего поля продолжается до тех пор, пока весь объем кристалла не будет занят одним доменом (рисунок 1.3.11, в). При дальнейшем з величении магюггаого поля вектор намагниченности домена поворачивается в направлении намагни- [c.30]

    После выключения насыщающего мапшгаого поля Н, вектор намагниченности домена возвращается в положение, показанное на рисунке [c.31]

    По различным причинам вращательная вязкость может не достигать максимальной величины. Одна из них—недостаточная напряженность поля, что учитывается формулой (VI 1.32). В числе других причин следует иметь в виду нарушение условия (VII.31), рассмотренное в задачах VI 1.17.3 и VII. 17.4, а также подвижность вектора намагниченности частицы относительно ее кристаллографических осей в случае веществ с малой магнитокристаллической анизотропией (например, магнетит FegOJ. Примером веществ с большой константой анизотропии являются феррит кобальта oO-Fe Og, металлический кобальт. [c.232]

    В работе [82] исследована зависимость наведенной анизотропии от приложенных сжимающих и растягивающих напряжений в поликристаллах стали 20. Под влиянием упругих деформаций в отдельных кристаллах устанавливается некоторая ориентация векторов намагниченности, соответствующая направлению наведенной анизотропйи и анизотропии формы [c.63]

    При небольших упругих растягивающих деформациях 90° соседства между доменами заменяются 180° (по аналогии с рисунком 2.2.1, д — г, где домены А, В, С, О вытесняются доменами Р, Н, К, М), поэтому в кристаллитах будет форшфоваться текстура, при которой векторы намагниченности будут направлены вдоль осей легкого намагничивания, ближайших к направлению действия растяжения, так как в данном случае знаки 00 и По совпадают. Сформированная вдоль оси образца текстура, сопровождающаяся увеличением площади 180° доменных границ (см. рисунок 2.2.1, в, г — для плоскости (100)), облегчает процессы перемагничивания. Но, как уже отмечалось, для стали Ящ <0, поэтому под действием достаточно болыш растягивающих напряжений (То > 60 МПа будет наблюдаться отклонение векторов намагниченности от тетрагональных направлений кристаллитов на плоскость, перпещхикулярную оси растяжения, при этом меняет знак продольная магнитострикция. [c.64]

    Явление импульсного ЯМР [1] состоит в изменении суммарной ядерной намагннченностн образца, помещенного одновременно в однородное постоянное магнитное поле и импульсное радиочастотное магнитное поле соответствующей частоты. Пре-цесспрующий вектор макроскопичсскоп ядерной намагниченности индуцирует в приемной катушке переменное напряжение, которое пропорционально концентрации исследуемых ядер н является функцией продольного времени (спин-решеточной) релаксации Ti и поперечного времени (спин-спиновой) релаксации T a. Из параметров сигнала ЯМР можно установить а) вид ядер — из напряженности магнитного поля и резонансной частоты б) число ядер, дающих вклад в резонанс,— из амплитуды сигнала в) связь между ядрами и их окружением и молекулярную подвижность — пз времен релаксации. [c.100]

    У газов и плазмы (ионизированный газ) абсолютная диэлектрическая и магнитная проницаемость имеет практически такое же значение, как в пустоте (Ва во Цв Но), поэтому В уравнениях магнитной газовой динамики можно обойтись без векторов электрической индукции и наиряженпости магнитного поля, т. е. можно не учитывать явлений поляризации и намагничения среды. [c.189]

    Рассмотрим сначала действие одиночного импульса высокочастотного поля Длительностью т на систему ядерных магнитных моментов, поляризованных сильным постоянным магнитным полем Яо. Импульс перпендикулярного Яо переменного поля резонансной частоты отклоняет результирующий вектор ядерной намагниченности М от равновесного направления, совпадающего с направлением Яо, на угол, определяемый при т<Ст1, Т2 длительностью импульса и амплитудой высокочастотного поля. После прекращения действия импульса вектор М свободно прецессирует вокруг направления Яо с ларморовой частотой vo= у (2я) Яо, постепенно возвращаясь к равновесному положению (рис. 8.2). [c.220]

    Рост компонента М , параллельного Но, определяется продольным временем релаксации Ть Убывание вращающегося компонента 1Аху, перпендикулярного Но, определяется поперечным временем релаксации Т2 и неоднородностью постоянного магнитного поля ДНо в объеме образца. Если расположить ось приемной катушки, содержащей образец, перпендикулярно Но, то вращающийся компонент Мосу наводит в ней э.д.с., спадающую во времени по экспоненциальному закону с характеристическим временем 1/т2 = у АЯоЧ-+ 1М- Огибающая этого процесса наблюдается на экране осциллографа, временная развертка которого запускается одновременно с началом импульса. Начальная амплитуда будет максимальной при отклонении вектора ядерной намагниченности за время действия импульса на 90° от направления поля. Этот способ пригоден для измерения только достаточно коротких времен Тг (т. е. [c.220]

    Для измерения более длительных Тг используется так называемое явление спинового эха, которое заключается в следующем. Высокочастотное поле подается на образец двумя интенсивными импульсами, разделенными интервалом времени Ь. Первый импульс отклоняет вектор ядерной намагниченности на 90° от направления поля. Так как магнитное поле внутри образца неоднородно, то-векторы намагниченности разнйх элементов образца прецессируют с разными ларморовыми частотами, образуя расходящийся во времени веер векторов. Второй импульс высокочастотного поля поворачивает этот веер на 180° относительно оси передающей катушки. При этом те компоненты веера , которые были первыми, станут последними. Поскольку компоненты веера продолжают смещаться в том же направлении относительно центра распределения, веер начинает складываться. В момент времени 2t все компоненты веера сольются в единый вектор, после чего опять начинается разделение. На экране осциллографа в этот момент возникает сигнал, называемый сигналом спинового эха, длительностью порядка ( у АЯо) . Амплитуда этого сигнала убывает при увеличении интервала времени по экспоненциальному закону ехр (—211x2), что и используется для измерения времени релаксации Т2. [c.221]

    Для измерения времени релаксации Т на образец подаются два импульса высокочастотного поля. Первый пмпульс поворачивает вектор намагниченности на 180° относительно направления постоянного поля, после чего он уменьшается до нуля и затем растет до-равновесного значения. В некоторый момент времени t этот процесс прерывается вторым импульсом, поворачивающим вектор на 90°, т. е. в плоскость, перпендикулярную направлению постоянного поля. Прецессирующий в этой плоскости вектор наводит затухающий сигнал в приемной катушке. Начальная амплитуда этого сигнала зависит от интервала времени t между импульсами по закону [c.221]

    После внедрения в 60-х годах электронно-вычислительной техники в физический эксперимент была реализована возможность получения спектров ЯМР высокого разрешения путем фурье-преоб-разования сигнала ССИ (см. гл. I 1.3) после воздействия короткого (порядка 10 5—10 с) мощного (от 1 кВт) импульса электромагнитного поля с несущей частотой V. Действие импульса продолжительностью (р состоит в повороте вектора намагниченности М на угол а, равный согласно (1.14) nBJp. [c.45]

    Пусть теперь на ядра действует переменное магнитное поле радиочастотного генератора Н , колеблющееся вдоль оси х. Это поле не имеет компонент вдоль оси у, но его можно представить как суперпозицию двух магнитных векторов, вращающихся в плоскости ху с одинаковой скоростью в противоположных направлениях с таким соотношением фаз, что они компенсируют друг друга в направлении оси у (рис. 17). Один из этих векторов вращается в том же направлении, что и пре-цессирующие ядерные магнитные диполи, тогда как другой вектор вращается в противоположном направлении. Очевидно поле, которое вращается противоположно прецессирующим ядрам, не взаимодействует с ними, потому что оно не может оставаться с ними в фазе. С другой стороны, поле, вращающееся в одном направлении с преиессирующими ядрами, может находиться в фазе, и это произойдет при совпадении частот вращения. При этом поле будет стремиться изменить ориентацию ядерных диполей, причем произойдет переход энергии вращающегося магнитного поля к ядрам с переводом их на другой конус прецессии. Этот процесс можно наблюдать у тех ядер, магнитные векторы которых отстают от вращающего поля по фазе на 90°. В результате суммарная намагниченность рассматриваемого конуса прецессии уже не будет совпадать с осью конуса, а как бы начнет вращаться с частотой прецессии вокруг этой оси, т. е. вокруг направления поля Яо (рис. 18), что приведет к появлению вращающихся компонент намагниченности в направлениях х у. Переменное маг нитное поле, направленное вдоль оси у, возбудит в катушке [c.49]


Смотреть страницы где упоминается термин Намагниченность, вектор: [c.176]    [c.282]    [c.8]    [c.139]    [c.140]    [c.256]    [c.28]    [c.30]    [c.31]    [c.31]    [c.64]    [c.119]    [c.221]    [c.49]   
ЯМР в одном и двух измерениях (1990) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Вектор

Намагниченность



© 2025 chem21.info Реклама на сайте