Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон собственный магнитный момент

    Нуклоны. Тяжелые элементарные частицы — протоны и нейтроны (нуклоны), а также построенные из них атомные ядра тоже обладают собственными магнитными моментами. По аналогии с электроном, можно было бы ожидать, что протон как заряженная элементарная частица, спин которой, согласно (519), равен й (или (]/3/2)й), должен обладать спиновым магнитным моментом [c.290]

    Д/ = А1 = 1 при одном оптическом (валентном) электроне и = О, 1 при нескольких оптических электронах Д/= = 0, 1, но переход Д/о о запрещен. Наконец, Д5 = О, что представляет собой закон сохранения спина переход молекул и атомов из основного состояния в возбужденное разрешен только при сохранении 5, иначе говоря, собственные магнитные моменты не могут переворачиваться. [c.342]


    В известных опытах Штерна и Герлаха узкий пучок атомов водорода, проходящих через неоднородное магнитное поле, расщеплялся на два пучка. Атомы водорода в 5-состоянии не имеют механического и магнитного орбитальных моментов и наблюдаемое явление можно было объяснить только существованием у электрона собственного магнитного момента. Дальнейшие исследования обнаружили расщепление спектральных линий ряда атомов с одиночным электроном на дублеты, что свидетельствует о наличии в атоме двух близких энергетических уровней, на которых может находиться электрон. [c.73]

    Спиновое квантовое число з может принимать лишь два возможных значения Ь /2 и — /о- Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона. [c.26]

    Спины электронов, находящихся на одной атомной или молекулярной орбитали, суммируются и взаимно компенсируются. Поэтому валентно-насыщенные частицы не обладают магнитным моментом, обусловленным спином электронов. Тем не менее они взаимодействуют с магнитным полем, хотя и существенно слабее, чем парамагнитные частицы. Это взаимодействие обусловлено действием внешнего магнитного поля на электронные оболочки, т. е. на движущиеся электрические заряды. В результате действий магнитного поля движение электронов искажается, возникает некоторая намагниченность, пропорциональная напряженности приложенного поля и направленная навстречу полю. Тем самым внешнее поле как бы ослабляется. В частности, это приводит к некоторому выталкиванию вещества из магнитного поля, т, е, этим эффектом обусловлен диамагнетизм веществ, построенных из валентно-насыщенных частиц. Естественно, что диамагнетизм присущ и парамагнитным частицам, поскольку они практически всегда наряду с неспаренными электронами имеют и спаренные электроны. Однако в связи с тем что диамагнитные эффекты существенно слабее парамагнитных, в целом частицы не слишком большого размера, обладающие собственным магнитным моментом электронной природы, проявляют парамагнитные свойства. [c.91]

    Столь различное поведение диа- и парамагнитных веществ обусловлено различным характером их внутренних магнитных полей. Как известно, вращение электронов вокруг оси создает магнитное иоле, характеризуемое спиновым магнитным моментом. Если в веществе магнитные поля электронов взаимно замкнуты (скомпенсированы) и их суммарный момент равен нулю, то вещество является диамагнитным. Если же магнитные поля электронов не скомпенсированы и вещество имеет собственный магнитный момент, то оно является парамагнитным. Так, атом водорода, имеющий один электрон, парамагнитен. Молекула же Нг диамагнитна, так как при образовании [c.187]


    Магнитный момент у атомов или молекул может быть результатом возникновения круговых токов в электронной оболочке или наличием неспаренных электронных спинов. Как известно, вещества, обладающие магнитными моментами такого рода, называют парамагнитными. В молекулах многих веществ, в том числе и большинства полимеров, электронный магнитный момент скомпенсирован. Подобные вещества относят к категории диамагнитных. Однако некоторые атомные ядра, например водорода и фтора, обладают собственными магнитными моментами, обусловленными их спинами. Поэтому в диамагнитных веществах энергия электромагнитного поля может поглощаться только ядерными магнитными моментами. Последние на три порядка меньще магнитных моментов электронов, поэтому резонансные частоты при магнитном резонансе на электронах значительно выше, чем резонансные частоты на ядрах, что определяет различие радиотехнических схем регистрации в обоих методах. [c.267]

    Магнитный момент у атомов или молекул может быть обусловлен круговыми токами в электронной оболочке и неспаренным электронным спином. Вещества, которые обладают магнитными моментами такого рода, называются парамагнитными. В молекулах различных веществ, в том числе в большинстве полимеров, электронный парамагнитный момент скомпенсирован. Такие вещества называются диамагнитными. Однако атомные ядра, например водорода и фтора, обладают собственными магнитными моментами, связанными с их спинами. Поэтому в диамагнитных веществах поглощение энергии электромагнитного поля может осуществиться только магнитными моментами ядер. Магнитные моменты атомных электронов на три порядка больше, чем ядерные магнитные моменты, поэтому резонансные частоты при магнитном резонансе па электронах значительно выше, чем резонансные частоты на ядрах, что определяет для этих методов различие радиотехнических схем. [c.211]

    Магнитные свойства зависят от собственных магнитных моментов ядерных нуклонов и электронов. Так как магнитные моменты протонов и нейтронов меньше магнитного момента электрона примерно в тысячу раз, то магнитные моменты атомов в основном определяются суммарным моментом электронов в атоме. Если моменты всех электронов в атоме взаимно компенсируются друг с другом, т. е. если суммарный момент будет равен нулю, то атом (или молекула) будет диамагнетиком, а если он отличен от нуля, то парамагнетиком. [c.101]

    Если атомы и молекулы вещества обладают собственными магнитными моментами (т. е. имеют неспаренные электроны), то при помещении этих частиц в магнитное поле их магнитные моменты начинают ориентироваться параллельно полю, сообщая веществу намагниченность. Явление намагничивания вещества, частицы которого обладают собственным магнитным моментом, названо парамагнетизмом. [c.191]

    Как уже отмечалось, при образовании двухэлектронной химической связи происходит взаимная компенсация спинов (магнитных спиновых моментов каждой пары электронов. Этому соответствует резкое снижение собственного магнитного момента молекулы по сравнению с составляющими ее атомами, в которых находятся неспаренные электроны. Так, например, у атома водорода магнитный момент л=1р,в (магнетон Бора). При образовании молекулы водорода Нг магнитные спиновые моменты двух атомов взаимно компенсируются, так что (.1 = 0, [c.198]

    Наконец, электроны атомов переходных элементов, располагаясь по одному в различных -ячейках, могут иметь одинаково направленные спины и, следовательно, приводить к высоким значениям спинового и магнитного моментов. Таким образом, для переходных элементов должно быть характерно наличие собственны. магнитных моментов н, следовательно, высоких значений магнитной восприимчивости. [c.461]

    Парамагнитные комплексы содержат неспаренные электроны. В молекулах таких веществ магнитные поля не скомпенсированы они имеют собственный магнитный момент. В диамагнитных веществах все электроны спарены, они выталкиваются из магнитного поля. В комплексе [c.227]

    Электрон обладает собственным магнитным моментом, обусловленным его спином. Величина проекции его собственного магнитного момента равна одному магнетону Бора в зависимости от расположения спина в пространстве она может иметь положительный или отрицательный знак эта проекция не может быть равной нулю. [c.297]

    Магнитные свойства веществ определяются магнитными свойствами ионов, атомов и молекул. В свою очередь, магнитные свойства атомов зависят от собственных магнитных моментов ядерных нуклонов и электронов. Магнитные моменты протонов и нейтронов пример- [c.114]

    Кроме внешнего поля и внутренних магнитных полей движущихся электронов ядра находятся в магнитных полях соседних ядер. Прямое действие магнитных полей ядер друг на друга очень мало, так как оно быстро затухает с расстоянием. Но электроны, осуществляющие химическую связь (напомним, что они имеют собственный магнитный момент), ориентируясь в поле одного ядра, воздействуют затем на другое, осуществляя, таким образом, спин-спиновое взаимодействие ядер. Величина этого взаимодействия — так называемая константа спин-спинового взаимодействия J измеряется в герцах. Взаимодействуют обычно только атомы соседних групп, расщепляя соответствующие сигналы в сложные мультиплеты. Так протоны групп, находящиеся рядом с группой, имеющей одиночный атом водорода, расщепляются в дублет с соотношением интенсивностей 1 1, потому что спин протона может иметь только две ориентировки во внешнем поле с примерно одинаковой вероятностью. Группы с двумя протонами, например —СНг, расщепляют сигналы соседних групп в триплеты с соотношением интенсивностей 1 2 1, так как спины двух протонов могут быть направлены или оба по полю, или в разные стороны, или оба против поля, причем легко видеть, что вероятность среднего случая в два раза больше, чем каждого из крайних. [c.344]


    Собственным магнитным моментом атом или молекула обладают в том случае, когда в электронной системе оказывается один или несколько электронов с неспаренным [c.101]

    С помощью этого метода также нельзя объяснить парамагнитные свойства молекул О2 и В2. Собственный магнитный момент (парамагнетизм) молекул обусловлен наличием неспаренных электронов. Согласно же методу ВС, молекулы О2 и Вг не имеют неспаренных электронов, т. е. они должны быть диамагнитны (не иметь собственного магнитного момента). [c.48]

    Приведенные схемы объясняют также магнитные свойства веществ. Вещества делятся на диамагнитные и парамагнитные. Первые оказывают прохождению магнитных силовых линий сопротивление большее, чем вакуум, а вторые — меньшее, чем вакуум. Поэтому внешнее магнитное поле выталкивает диамагнитные вещества и втягивает парамагнитные. Столь различное поведение веществ объясняется характером их внутренних магнитных полей, складывающихся из собственных магнитных моментов нуклонов и электронов. Но магнитный момент атома определяется главным образом суммарным спиновым магнитным моментом электро- [c.87]

    Все электроны в атоме отличаются друг от друга. Они располагаются на различных энергетических уровнях и подуровнях, различных орбиталях и могут обладать различным собственным магнитным моментом — спином. Число энергетических уровней, содержащих электроны для атома данного элемента, равно номеру периода, а число электронов на внешнем уровне для элементов главных подгрупп — номеру группы. [c.111]

    Существуют экспериментальные доказательства того, что частицы обладают собственным механическим моментом (если частица заряжена, то с ненулевым механическим моментом связан и ненулевой собственный магнитный момент). Величина собственного (спинового) момента количества движения равна Ув (в + 1)Й, где спин з — целое (включая нуль) или полуцелое положительное число, определяемое природой частицы. Для большинства элементарных частиц (электроны, протоны, нейтроны и др.) 5 = 1/2 для фотона 5=1 для я - и К-мезонов 8 = 0. Проекция собственного момента количества движения частицы на фиксированную ось г определяется как т Й, где /и, — одно из значений в ряду —5, —5 + 1..... — 1,8. Если з = 1, то возможные значения есть —1 О 1 если 5 = 1/2, то т, может принимать два значения —1/2 и 1/2. Внутреннее состояние частицы данного типа может отличаться по значению переменной Таким образом, полное квантовомеханическое состояние частицы определится заданием волновой функции гр ( с, у, г) и спинового числа т,. Для частицы, движущейся в потенциальном ящике, требуется задать квантовые числа Пх, пу, и спиновую переменную т, — всего четыре переменных. Возможны 28 + 1) состояний с заданной функцией гр (л , у, г), отличающихся по ориентации спина (переменной т ). [c.157]

    Спиновое квантовое число 5 характеризует собственный магнитный момент электрона и принимает только два значения  [c.214]

    На самом деле электрон имеет еще собственный магнитный момент, равный одному магнетону Бора. При этом не выдерживается отношение i/p, определяемое уравнением (XXV.5), так как собственный момент вращения электрона (спин-момент) равен лишь ( /2) (/г/2л) (см. гл. ХХП). [c.670]

    О. Штерна и В. Герлаха, 1922) сформулировали весьма интересную идею о наличии у электрона собственного магнитного момента. Эта идея в существенной степени уже назрела среди физиков того времени (например, в виде признания необходимости изменения тех или иных квантовых чисел на 1/2) и пусть не в столь явной форме, но высказывалась и А.Ланде, и В.Паули, и самими авторами эксперимента по расщеплению пучка атомов серебра. В опытах Штерна - Герлаха изучались атомы серебра в основном состоянии, в котором электронный угловой момент должен был бы равняться нулю. Однако в сильно неоднородном магнитном поле пучок таких атомов расщеплялся на две компоненты, что свидетельствовало о том, что у этих атомов есть какой-то магнитный момент, не связанный непосредственно с орбитальным моментом. Расщепление на две компоненты к тому же говорило о том, что для этого момента 2/ -I-1 = 2, так что / = 1/2. Этот совсем уж необычный результат заставил искать правдоподобные объяснения, что сначала привело к мысли о вращении электронов вокруг некоторой собственной оси (подобно планетам) и наличии связанного с таким вращением дополнительного момента количества движения. По этой причине дополнительный момент был назван спином (англ. to spin — вращаться подобно веретену) и обозначен символом s. Однако дальнейший анализ привел к выводу, что такое объяснение неудовлетворительно, так как тогда электрон должен был бы иметь конечные размеры, а это вызвало бы новые затруднения в построении теории. [c.132]

    Для электрона характерно также вращение вокруг собственной оси, которое может пррисходить в двух взаимно противоположных направлениях. Возникающие при этом собственные магнитные моменты электрона имеют два значения в зависимости от того, совпадают они с ориентацией орбитального момента электрона или направлены в противоположную сторону. В связи с этим спиновоел ШЦОвое число т., может иметь значение + /2 или — /2- [c.40]

    Уравнение Шредингера описывает состояния электрона, движущегося в трехмерном пространстве. При этом требования теории относительности никак не учитываются. Если же их учесть, то уравнение Шредингера следует заменить другим, релятивистским уравнением Дирака, из которого непосредственно вытекает существование у электрона собственного момента импульса, а следовательно, и собственного магнитного момента. Собственный момент электрона (S) называют также спиновым (от английского глагола to spin — прясть, плести, крутить(ся), вертеть(ся)) или просто спином. [c.57]

    Описанный выше механизм резонансного поглощения энергии должен приводить к единственной линии в спектре ЭПР — син-глету. Однако вследствие взаимодействия магнитного момента неспаренного электрона с магнитными моментами ядер, которые охватываются орбиталью электрона, в спектрах ЭПР возникает сверхтонкая структура (СТС). К числу ядер, обладающих собственным магнитным моментом, принадлежат Н, С, М, Ю, и некоторые другие. Так, магнитный момент протона создает в месте нахождения неспаренного электрона дополнительное магнитное поле АН. Поскольку во внешнем магнитном поле с напряженностью Но реализуются две противоположные ориентации магнитного момента протона (по направлению поля и против него), то одна часть неспаренных электронов окажется в суммарном поле Н = Но+АНи другая — в поле Н = Но—ДЯь Это обстоятельство вызывает дополнительное расщепление энергетического уровня неспаренного электрона и появление двух линий в спектре ЭПР. Расстояние между ними в спектре а = 2ДЯ1 называется константой сверхтонкого взаимодействия (СТВ). [c.224]

    В атомах и молекулах каждый электрон в процессе своего орбитального и спинового движения создает магнитное поле и характеризуется жагныгньш жоленгож = (/71,+1), где — множитель Ланде, характеризующий относительную величину зее-мановского расщепления уровнен энергии атома цв —магнетон Бора nil — магнитное квантовое число. У двух электронов, находящихся на одной орбитали, эти моменты скомпенсированы, поэтому атомы и молекулы, не имеющие неспаренных электронов, не обладают собственными магнитными моментами. Однако и такие атомы и молекулы, попадая во внешнее магнитное поле, взаимодействуют с ним (выталкиваются из него). Этот вид взаимодействия вещества с магнитным полем получил название диамагнетизма. Важной особенностью диамагнетизма является независимость от температуры. [c.190]

    Уравнение Шрёдингера не содержит никаких сведений о спине электрона, который является одной из его важнейших характеристик. Представление о спине, или собственном магнитном моменте электрона, было введено в физику в 1925 г. Дж. Ю. Уленбеком и С. А. Га-удсмитом. Более общее волновое уравнение, включающее спин электрона, было получено Паулем Дираком в 1928 г. Однако вследствие сложности этого уравнения предпочитают пользоваться более простым уравнением Шрёдингера, дополняя его спиновыми волновыми функциями. [c.164]

    Вектор спина может ориентироваться в двух направлениях относительно поля так же, как и относительно вектора орбитального момента (орбитальное движение электрона создает магнитное поле ). Схему ориентации вектора в магнитном поле см. на рис. 3,6. Собственный магнитный момент электрона связанный со спином, равен у5мв> направление вектора Л/с противоположно направлению вектора а, а его составляющая относительно направления поля — одному магнетону Бора Благодаря взаимодействию орбитального и спинового магнитных моментов векторы / и я определенным образом ориентируются друг относительно друга и векторно складываются, образуя результирующий [c.38]

    Изучая тонкие эффекты в атомных спектрах щелочных металлов, Д. Уленбек и С. Гоудсмит в 1925 г. пришли к выводу, что состояние электрона в атоме зависит также от его собственного момента количества движения, возникающего как бы из-за вращения электрона вокруг своей оси. Разумеется, представить себе наглядно, как частица-волна крутится волчком, невозможно. Вместе с тем электрон, обладая электрическим зарядом, проявляет и собственный магнитный момент. Его называют спином электрона и обозначают через 5, равное /г. [c.35]

    Приведенные схемы объясняют также магнитные свойства веществ. Вещества делятся на диамагнитные и парамагнитные. Первые оказывают сопротивление прохождению магнитного поля большее, чем вакуум, вторые — меньшее, чем вакуум. Поэтому внешнее магнитное поле выталкивает диамагнитные вещества и втягивает парамагнитные. Столь различное поведение веществ объясняется характером их внутренних магнитных полей, складывающихся из собственных магнитных моментов нуклонов и электронов. Но магнитный момент атома определяется главным образом суммарным спиновым магнитным моментом Электронов, так как могнитные моменты протонов и нейтронов примерно на три порядка меньше моментов электронов. Если два электрона находятся в одной орбитали, то их магнитные поля замыкаются. Если в веществе магнитные моменты всех электронов взаимно скомпенсированы, т. е. все электроны спарены, то это вещество диамагнитное. Напротив, если в орбиталях имеются одиночные электроны, то вещество проявляет парамагнетизм. Примерами диамагнитных веществ могут служить молекулярные водород, азот, фтор, углерод и литий (в газообразном состоянии). К парамагнитным относятся молекулярный бор, кислород, оксид азота). Вещества с аномально в .1сокой магнитной восприимчивостью (например, железо) называются ферромагнитными. Ферромагнетизм проявляется ими только в твердом состоянии. [c.70]

    Чтобы выстроить спины обоих электронов в одном направлении, необходимо, по принвдшу Паули, перевести один из электронов на возбужденный уровень и сообщить при этом атому энергию А =Ау. Эта энергия может быть сообщена атому внешним магнитным полем, взаимодействующим с собственным магнитным моментом электрона. При изменении направления спина в магнитном поле энергия электрона изменится на 2 м В. [c.152]

    Вскрыть ИХ может только по.тный анализ взаимодействий в каждом конкретном случае. Кроме электронных оболочек собственными магнитными моментами обладает и большинство ядер, имеющих в своем составе нечетное число протонов ( Н, Р, Ф, В, Вг) или нейтронов ( С, но эффект их взаимо- [c.711]


Смотреть страницы где упоминается термин Электрон собственный магнитный момент: [c.152]    [c.101]    [c.38]    [c.51]    [c.53]    [c.47]    [c.48]    [c.51]    [c.53]    [c.73]   
Современная неорганическая химия Часть 3 (1969) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Магнитный момент

Момент электрона

Собственные

Электрон магнитный

Электрон собственный

Электронный момент



© 2025 chem21.info Реклама на сайте