Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность в переменном частоты, теория

    Второй эффект — увеличение эквивалентной электропроводности при очень высоких частотах переменного тока —был предсказан П. Дебаем и X. Фалькенгагеном на основе теории Дебая — Гюккеля—Онзагера. Как следует из этой теории, если частота используемого для измерений переменного тока ш>2я/г, то симметрия ионной атмосферы не нарушается и исчезает релаксационный эффект торможения. В то же время электрофоретический эффект торможения сохраняется и Л не выходит на свое предельное значение Л°. Вин провел измерения электропроводности при помощи высокочастотного переменного тока и подтвердил существование эффекта Дебая — Фалькенгагена. Более того, увеличение эквивалентной электропроводности в эффекте Дебая — Фалькенгагена составляет /з от увеличения Л в эффекте Вина, что находится в согласии с уравнением (1У.62). [c.81]


    Важным экспериментальным доказательством правильности теории Дебая — Онзагера является рост электропроводности с увеличением частоты поля (эффект Дебая— Фалькенгагена) и его напряженности (эффект Вина). Эффект Дебая — Фалькенгагена, или дисперсия электропроводности, сводится к тому, что электропроводность электролитов возрастает с ростом частоты переменного тока. Это явление можно объяснить следующим. При движении ионов в результате частичного смещения ионной атмосферы в сторону, противоположную движению центрального иона, возникает торможение (релаксационный эффект), являющееся следствием асимметрии в распределении зарядов вокруг иона. Если направление поля меняется за промежуток времени, меньший, чем время релаксации, то ионная атмосфера не будет успевать разрушаться, что приведет к уменьшению асимметрии. При достаточно большой частоте релаксационный эффект сведется к нулю и сохранится только влияние катафоретического эффекта. Следовательно, электропроводность возрастает. Поясним сказанное примером. Пусть скорость ионов равна uj eK. Тогда при частоте 50 пер1сек за один период ионы пройдут расстояние [c.115]

    Эффект Дебая — Фалькенгагена, или дисперсия электропроводности, сводится к тому, что электропроводность электролитов возрастает с ростом частоты переменного тока. Это явление легко объяснить на основании теории Дебая—-Онзагера. [c.119]

    Теоретическое рассмотрение вопроса о влиянии частоты переменного тока на эффективную величину электропроводности показало, что это влияние может достигнуть значительных масштабов. Опытные данные подтвердили общие заключения теории. [c.147]

    Если к раствору электролита приложено переменное электрическое поле с частотой порядка этого времени релаксации, то атмосфера не успевает сделаться асимметричной и изменение подвижности ионов, связанное с асимметричностью их атмосфер, будет меньше, чем в стационарном случае. Эта идея лежит в основе развитой Дебаем и Фалькенгагеном теории влияния высоких частот на электропроводность ионных растворов. Отправным пунктом этой теории является уравнение (39) для нестационарного случая. [c.45]

    Второй эффект — увеличение эквивалентной электропроводности при очень высоких частотах переменного тока — был предсказан П. Дебаем и X. Фалькенгагеном на основе теории Дебая — Гюккеля — Онзагера. Как вытекает из этой теории, если частота используемого для измерений переменного тока (о>2л/т, то симметрия ионной атмосферы не нарушается и исчезает релаксационный эффект торможе- [c.72]


    Если для изменений электропроводности растворов электролитов использовать импульсы тока с напряженностью порядка 40 МВ/м, то ионы проходят расстояние, равное радиусу ионной атмосферы, за время, меньшее времени релаксации т. В этих условиях оба тормозящих эффекта (электрофоретический и релаксационный) отсутствуют и эквивалентная электропроводность достигает своего предельного значения Л". Это явление получило название эффекта Вина. Если же для измерений электропроводности растворов электролитов применять переменный ток столь высокой частоты, что ы > 2л/т, то отсутствует лишь релаксационный эффект торможения, о явление, названное эффектом Дебая — Фалькенгагена, было предсказано авторами на основе теории Д( ая — Гюккеля — Онзагера и гюлучило затем экспериментальное подтверждение. [c.89]

    В настоящее время метод импеданса все шире применяют в корро-зиометрии, поскольку коррозия как фарадеевский процесс (прохождение тока через электрохимическую систему) описывается фарадеевским импедансом. К достоинствам метода относятся использование очень слабых электрических сигналов ( АЕ < 5 мВ), которые не оказывают воздействия на корродирующую систему, а также возможность измерения скорости коррозии в средах с низкой электропроводностью [103 ] и оценки защитных свойств покрытий на металле [104], коща метод поляризационного сопротивления непригоден. Это обусловило интенсивные работы по установлению взаимосвязи скорости коррозии и составляющих фарадеевского импеданса [102,105]. Согласно теории [102]корро-зионный ток (скорость коррозии) определяется сопротивлением переноса заряда (т.е. сопротивлением электрохимической реакции переменному току при активационном контроле) Кт. Величину Кт можно рассматривать как предел ( радеевского импеданса при бесконечной частоте переменного тока [106 ], поскольку экспериментальные данные лучше согласуются со значениями импеданса, измеренными при достаточной высокой частоте, коща не нарушается диффузионное и адсорбционное равновесие в электрохимической системе  [c.20]

    Принцип суперпозиции позволяет, используя функцию спадания тока при постоянном напряжении, рассчитать фактор диэлектрических потерь в переменных электрических полях. Согласно теории 17, 8] эффективная электропроводность, измеренная в переменном электрическом поле с круговой частотой ш, равна эффективной проводимости, определенной спустя т сек после подачи постоянного напряжения, если [c.14]

    На основании своей теории Дебай и Гюккель [10] внесли также существенный вклад в теорию электропроводности электролитов. Несколько позже, развивая общую теорию движения ионов, Онзагер [11] вывел предельный закон для электропроводности электролитов. Впоследствии теория электропроводности Онзагера была расширена Дебаем и Фалькенгагеном [12], которые учли влияние высокой частоты переменного тока на электропроводность и диэлектрическую постоянную. Предельный закон для вйзкости растворов электролитов вывел Фалькенгаген [13], а общие законы диффузии электролитов были изучены Онзагером и Фуоссом [14]. Далее, Иоос и Блю-ментрит [15] исследовали с теоретической точки зрения эффект Вина, т. е. влияние сильных электрических полей на свойства растворов электролитов. Позднее Вильсон [16] дал полное решение этого вопроса для случая электролитов, диссоциирующих на два иона. Очень интересная теория влияния сильных полей на ионизацию слабых электролитов была развита Онзагером [17]. [c.34]

    На основе электростатической теории была разработана Онзагером теория электропроводности сильных электролитов, которая базируется на представлении о конечном времени релаксации ионной атмосферы дано объяснение так называемого эффекта Вина Дебаем и Фалькенхагеном высказано предположение о высокочастотном эффекте, заключающемся в возрастании электропроводности с частотой переменного тока. [c.50]

    Определение электропроводности при высоком напряжении и высокой частоте. Измерение электропроводности электролитов с помощью переменного тока очень высокой частоты или высокого напряжения приобрело особый интерес в связи с современными теориями растворов электролитов. В этих особых условиях обычный метод мостика Уитстона неприменим в связи с этим были использованы некоторые другие экспериментальные методы. Основная трудность заключается в определении положения равновесия было показано, что наиболее подходящим для этой цели является бареттерный мостик. Одна из разновидностей такого мостика изображена на рис. 19, II по существу это мостик Уитстона. Одна из ветвей его содержит самоиндукции и и небольшую бареттерную лампу с тонкой нитью параллельно с бареттером включена самоиндукция М , предназначенная для связи с главным контуром, и конденсатор Сг. Другая ветвь мостика содержит самоиндукции и 4 и бареттер 1 , который по своим свойствам должен быть идентичен 1 , этот бареттер также шунтирован самоиндукцией Жа и конденсатором С . Две другие ветви мостика составляют переменные сопротивления и Постоянное напряжение накладывается на мостик с помощью батареи постоянного тока, нульинструментом служит гальванометр Г. Включенная последовательно с гальванометром самоиндукция препятствует прохождению через него индуцированных токов. В начале опыта мостик уравновешивается с помощью сопротивлений и [c.83]


    Дисперсия электропроводности. Есть еще одна возможность ослабить действие ионных атмосфер. Состоит она в том, что электропроводность измеряется в переменных полях очень большой частоты. Тогда ионы будут настолько быстро колебаться от одних положений к другим и обратно, что ионные атмосферы не успеют разрушаться. В этих случаях мы должны ожидать устранения релаксационной силы торможения (катафоретическаясила остается, так как ионные атмосферы не исчезают). В пределе очень больших частот переменного поля слагаемое Х в (263) должно стремиться к нулю, аХ — к пределу Х = Хда — Х , т. е. принимать некоторое промежуточное значение (между X для обычных полей и Х при бесконечном разведении), которое может быть вычислено из теории Дебая и Гюккеля. Этот новый эффект был предсказан Дебаем и Фалькенгагеном. Он был назван дисперсией электропроводности. Заметного эффекта можно ожидать в водных растворах, как показывает расчет, при полях порядка 10 колебаний в секунду (длины волн порядка 1000 м), а полного исчезновения релаксационной силы — при частотах порядка миллионов (длины волн порядка 10 м). Экспериментально дисперсия эдектропроводности была найдена 3 а к о м (1928) в лаборатории Дебая и затем была количественно изучена им и другими исследователями. Разность между X в обычных полях малых частот и предельной величиной для очень быстропеременных полей дает силу релаксации [см. пояснения к формуле (266)] в хорошем согласии с теорией. [c.339]

    В этом разделе будут рассмотрены некоторые технические и экспериментальные проблемы, встречающиеся при измерениях электропроводности. Теория и практика ионной проводимости рассмотрэна довольно полно в нескольких монографиях [119, 70[ и во множестзз оригинальных статей. Проблема сводится к определению сопротивления растворов исследуемого электролита при данной его концентрации и к проведению серии измерений для ряда уменьшающихся концентраций вещества при фиксированной температуре. Обычно, хотя это не является обязательным, сопротивление определяют при помощи моста переменного тока на частоте около 1000 гц во избежание поляризации электродов. Необходимо убедиться, что сопротивление не зависит от частоты, и, если это действительно имеет место, возможна экстраполяция на бесконечную частоту (детали см. в работе [751, стр. 94 и 95). [c.269]


Смотреть страницы где упоминается термин Электропроводность в переменном частоты, теория: [c.97]    [c.132]    [c.74]    [c.97]    [c.132]   
Физическая химия растворов электролитов (1950) -- [ c.97 , c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Электропроводность в переменном поле частоты, теория

Электропроводность в частоты, теория

Электропроводность теория

Электропроводность частоты переменного ток



© 2025 chem21.info Реклама на сайте