Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойная спираль

    Известно также, что две полимерные цепочки дезоксирибонуклеиновой кислоты могут образовать двойную спираль, если входящие в структуру каждого звена полимерной цепи гетероциклические основания — аденин, гуанин, цитозин и тимин — чередуются таким образом, что тимину в одной цепи соответствует аденин в другой, и цитозину в одной цепи соответствует гуанин в другой. Важную роль при этом играют водородные связи, которые образуются между этими парами оснований. Образование водородных связей между тимином и аденином, гуанином и цитозином можно представить следующим образом  [c.120]


    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]

    Строение цепочки нуклеотидов можно представить схемой (рис. IV. 1). Цепь этого типа соединяется с другой такой же посредством водородных связей, действующих между основаниями. Поэтому огромная молекула ДНК — двойная и представляет собой по конфигурации двойную спираль. Расплетаясь, каждая одиночная ветвь спирали присоединяет к себе нуклеотиды, имеющиеся в среде, и таким путем из одной двойной молекулы возникают две двойные. Водородные связи между основаниями расположены внутри спирали, а углеводно-фосфатные группы —на ее внешней части (рис. IV.2). [c.351]

    Двойная спираль ДНК (разд. 25.6) образуется как бы в результате закручивания двух полинуклеотидных цепей друг около друга по винтовой линии вокруг общей оси. Две цепи двойной спирали ДНК являются комплементарными (взаимодополняющими), так как расположение органических оснований вдоль двух цепей создает оптимальные условия для возникновения водородных связей. [c.465]

    Диаграмма обтекания газового потока в обычном циклоне (рис. VI-7) намного сложнее, чем в прямоточном циклоне с неподвижным импеллером. В общих чертах поток представляет собой двойную спираль, причем поток во внешней спирали движется вниз по направлению к бункеру, а во внутренней — по восходящей к выводной трубе. На этот поток накладывается вторичный газовый поток от внешней спирали к внутренней. Такая модель движения была подробно изучена различными исследователями [258, 431, 515, 587, 765, 803] и недавно была объектом обширного обзора [391]. [c.258]

    Двойная спираль. Воспоминания об открытии структуры ДНК. — Ижевск НИЦ Регулярная и хаотическая динамика , 2001, 144 стр. [c.4]

    Двойная спираль — автобиографическая повесть, в которой Уотсон подробно рассказывает о том, как он и его соавторы пришли к этому открытию, — знакомит читателя с кухней большой науки. Непринужденная манера изложения, яркие характеристики действующих лиц — известных американских и европейских ученых, образный литературный язык привлекут к книге внимание не только ученых, но и любителей научно-популярной литературы. [c.4]

    Что касается вторичной структуры, то наш И сведения относятся в большей степени к ДНК. Две макромолекулы этой кислоты образуют двойную спираль с правым направлением вращения, причем азотистые основания каждой макромолекулы направлены внутрь двойной спирали и связаны друг с другом водородными связями. Такая структура называется по имени первооткрывателей моделью Уотсона — Крика. Оба ученых совместно с Уилкинсом были удостоены за это открытие Нобелевской премии 1963 г. [c.218]


    Литературное произведение Дж. Уотсона создало вокруг имени автора не меньший ореол известности, чем само научное открытие, историю которого Двойная спираль описывает и которое, как все знают, принесло Уотсону совместно с двумя другими учеными высшую международную научную награду — Нобелевскую премию. Нет сомнения, что не было другой книги из сферы науки, которая получила бы столько откликов почти во всех наиболее распространенных научных журналах и стала бы предметом столь же живого (и часто не очень здорового) интереса со стороны гораздо более широкого круга читателей, чем это обычно имеет место. [c.5]

    Я понимаю, что отдельные эпизоды другие их участники изложили бы иначе — и потому, что иначе их запомнили, и главное потому, что два человека всегда видят одно и то же событие по-разному. В этом смысле никто никогда не сможет написать окончательную историю открытия структуры ДНК. Тем не менее я чувствую, что должен об этом рассказать хотя бы потому, что многие интересовались, как именно была открыта двойная спираль, и для них неполный рассказ об этом все же лучше, чем ничего. Но самое важное, на мой взгляд, то, что широкая публика по-прежнему не представляет себе, как делается наука. Я вовсе не утверждаю, будто вся наука делается именно так, как описано здесь. Отнюдь нет пути научных исследований почти столь же разнообразны, как и человеческие характеры. С другой стороны, я не думаю, [c.10]

    Мысль об этой книге зародилась у меня почти сразу же, как была открыта двойная спираль. Поэтому многие события, имевшие отношение к этому открытию, я помню гораздо лучше, чем большинство остальных эпизодов моей жизни. Кроме того, я широко пользовался письмами, которые чуть ли не каждую неделю писал родителям. Эти письма, в частности, позволили мне установить точную хронологию многих событий. Не менее ценными были замечания друзей, любезно прочитавших первые варианты книги и напомнивших мне подробности некоторых эпизодов, которых я коснулся лишь вкратце. Конечно, нередко наши воспоминания расходились, и эту книгу следует рассматривать как изложение моей собственной точки зрения. [c.11]

    Однако в этот вечер нам не удалось окончательно обосновать двойную спираль. Без металлических оснований модель получилась бы слишком неряшливой и поэтому неубедительной. Я вернулся к Камилле, чтобы сказать Элизабет и Бертрану, что мы с Фрэнсисом, кажется, опередили Полинга и что наше открытие произведет переворот в биологии. Они искренне обрадовались Элизабет — от гордости за брата, а Бертран — потому что теперь у него появилась возможность рассказывать о приятеле, который получит Нобелевскую премию. Питер тоже пришел в восторг и как будто совсем не огорчился от того, что его отца ждало большое научное поражение. [c.113]

    Морису понадобилось не больше минуты, чтобы оценить модель. Он уже слышал от Джона, что модель двухцепочечная и скрепляется парами оснований А-Т и Г-Ц поэтому он сразу же углубился в подробности. То, что цепей две, а не три, его не смутило, так как данные, как будто говорившие в пользу последнего предположения, никогда не были очень четкими. Пока Морис молча созерцал наше металлическое сооружение, Фрэнсис, стоя рядом, то принимался очень быстро рассказывать, какую рентгенограмму должна дать такая структура, то вдруг умолкал, соображая, что Морис хочет рассматривать двойную спираль, а не выслушивать лекцию по кристаллографии, которую он может прочесть и сам. Наше решение взять гуанин и тимин в кето-форме сомнению не подвергалось иначе пары оснований не получились бы. Устные доводы Джерри Донохью Морис выслушал так, словно это были азбучные истины. [c.118]

    Мы специально не спрашиваем, как вы в конце-концов открыли двойную спираль. Наверное, эта тема у вас, что говорится, в зубах навязла. А кроме того, все это хорошо описано в вашей книге, которая обошла весь мир и была издана и у нас. Кстати, ее первая публикация на русском языке появилась именно на страницах Химии и жизни. Но вот что интересно. Из этой книги мы знаем, что вам в третий раз повезло — вы встретили в Кембридже Фрэнсиса Крика. Воистину, правильно вас называли счастливчик Джим . Кстати, если бы вы сейчас начали писать эту книгу заново, то как бы вы ее написали  [c.137]

    Как показано на рис. 25.17, молекулы ДНК состоят из двух линейных цепей, которые скручены в двойную спираль. Рассмотрение модели двойной спиральной молекулы ДНК, в которой представлены все атомы, слишком непростое дело. Однако в строении молекулы ДНК можно разобраться при помощи более схематичного изображения, показанного на рис. 25.18. Напомним, что одна полимерная цепь состоит из чередующихся сахарного и фосфатного остатков, которые на рисунке обозначены символами —8— и —Р— соответственно. К полимерной цепи у каж- [c.462]

    Известна также, что две полимерные цепочки дезоксирибонуклеиновой цепи могут образовать двойную спираль, если входящие -в- труктуру каждого звена полимерной цепи гетероциклические [c.109]

    Особенностью т-РНК является то, что на одном конце цепочки, содержащей всего 80 нуклеотидов, всегда помещается группа из трех частиц двух цитозина и одной аденина на другом конце находится гуанин. Водородные связи между основаниями обусловливают скручивание отдельных участков цепи в двойную спираль. Свободные нуклеотиды взаимодействуют с матрицей, на которой закрепляется совокупность аминокислот во время синтеза белка. Существование таких свободных нуклеотидов, возможно, связано с наличием в т-РНК пуриновых или пиримидиновых оснований, [c.391]

    Эти эффекты еще увеличиваются у полимерных молекул, несущих большое число зарядов, например у нуклеиновых кислот. Прочность комплексов в этом случае может изменяться на несколько порядков при изменении ионной силы раствора. Например, двойная спираль ДНК есть комплекс двух отрицательно заряж енных полимерных анионов нуклеиновой кислоты. Поэтому для существования ДНК в виде двойной спирали нужно, чтобы ионная сила раствора не была бы слишком низкой. Конечно, говоря о таких огромных молекулах, можно рассуждать лишь качественно, так как использовать уравнение Дебая — Гюккеля, выведенное для точечных зарядов, неправомерно. [c.266]


    Расплетание (верхний рисунок) дает две новые цепи. Внизу конфигурация молекулы ДНК — двойная спираль [c.352]

    Полинг считал, что предложенную им спиральную модель молекулы можно распространить и на нуклеиновые кислоты. В начале 50-х годов английский физик Морис Хью Фредерик Уилкинс (род. в 1916 г.) изучал нуклеиновые кислоты методом дифракции рентгеновских лучей, и результаты его работы можно было использовать для проверки справедливости предположения Полинга. Английский физик Фрэнсис Гарри Комптон Крик (род. в 1916 г.) и американский химик Джеймс Дьюи Уотсон (род. в 1928 г.) установили, что удовлетворительно объяснить результаты дифракционных исследований можно, лишь несколько усложнив модель молекулы. Каждая молекула нуклеиновой кислоты должна представлять собой двойную спираль, образованную навитыми вокруг общей оси цепями. Эта модель Уотсона — Крика, предложенная ими впервыев 1953г., сыграла важную роль в развитии генетики . [c.131]

    В поле зрения зрительной трубы (правый окуляр) имеется перекрестие. Зрительную трубу III можно поворачивать вокруг оси лимба 8. Для грубой наводки следует ослабить винт и поворачивать зрительную трубу на нужный угол. Точная наводка перекрестия на верхнюю границу спектральной линии осуществляется микровинтом. При точной наводке винт должен быть ввернут. В зрительной трубе помещается призма 6, которая служит для определения нуля шкалы прибора. Призма 6 освещается через систему призм лампочкой 7. Для отсчета угла поворота зрительной трубы имеется лимб 8 со спиральным окулярмикрометром 9. Шкала спирального окуляр-микрометра освещается лампочкой 7. Для отсчета угла иаклопа зрительной трубы необходимо маховичком, расположстплм в пижней части окулярмикрометра, повернуть диск с двойными спиралями до совмещения нп рнха градусного деления с двойной спиралью, как это показано иа рнс. 44. Отсчет угла установки будет 12,2725 (рис. 45). [c.87]

    Мне довелось видеть, как в регулярно публикуемых газетой Нью-Йорк геральд трибюн перечнях десяти названий книг, пользовавшихся на протяжении истекшей недели наибольшим спросом покупателей, снова и снова фигурировало заглавие книги Уотсона. Невиданное дело — книга о науке оказалась бестселлером наряду с последней книжкой Агаты Кристи или Сименона. Оснований для такой необычайной популярности немало. В наши дни даже школьник-старшеклассник либо далекий от науки рядовой читатель газеты или еженедельного журнала уже что-то слышал о генетическом коде и об открытии вещества наследственности — пресловутой ДНК с ее своеобразным строением в виде двух нитей, закрученных одна вокруг другой в двойную спираль . Довольно заманчиво узнать из уст автора этого открытия о том, как оно было сделано. Но, конечно, одной такой научной любознательности недостаточно, чтобы сделать книгу бестселлером. Большую роль сыграла та атмосфера литературного скандала , которая сложилась вокруг произведения Уотсона еще даже до его фактического выпуска в свет и все шире распространялась после появления книги. [c.5]

    Достаточно было одной просьбы, и через два часа последняя пайка была завершена. Мы сразу же пустили блестящие металлические пластинки в дело и принялись строить модель, в которой впервые были налицо все компоненты ДНК. Примерно за час я расположил атомы так, как того требовали и рентгенографические данные и законы стереохимии. Получилась правозакрученная двойная спираль с противоположным направлением цепей. С моделью удобнее работать одному, и Фрэнсис не вмешивался до тех пор, пока я не отступил назад и не сказал, что, по-моему, все подошло. Хотя один межатомный промежуток оказался немного короче оптимального, он согласовывался с некоторыми опубликованными величинами и не вызывал у меня тревоги. Фрэнсис повозился с моделью минут пятнадцать и не нашел никаких ошибок. Правда, временами он хмурился, и тогда у меня падало сердце. Но всякий раз он приходил к выводу, что все верно, и принимался проверять следующее межатомное расстояние. Когда мы отправились ужинать к Одил, все выглядело прекрасно. [c.114]

    Теперь, когда напряжение осталось позади, я отправился играть в теннис с Бертраном, сказав Фрэнсису, что ближе к вечеру напишу про двойную спираль. Луриа и Дельбрюку. Мы договорились также, что Джон Кендрью позвонит Морису и пригласит его посмотреть, что соорудили мы с Фрэнсисом. Ни Фрэнсису, ни мне не хотелось брать это на себя утром Фрэнсис получил от Мориса письмо, в котором тот сообщал, что берется теперь вплотную за ДНК и намерен особое внимание уделить постройке модели. [c.117]

    Случай Дж. Уотсона как будто опровергает эти слова. Те, кто прочли его нашумевшую книжку Двойная спираль об истории открытия структуры ДНК, нигде не заметят, что автор с утра до ночи корпит над трудными экспериментами или же изнурительными расчетами. Напротив, он увиливает от скрупулезной микробиологической работы в Европе, для которой ему выхлопотали стипендию руководители отправляется на конференцию в Италию, где откровенно отлынивает от заседаний и лишь выносит из доклада Мориса Уилкинса сведения о том, что ДНК — очень однообразная структура. А потом почему-то едет в Англию, и здесь, вместо того, чтобы погрузиться в детальные биохимические исследования, тратит время, прогуливаясь по аллеям Кембриджа с неудачником Френсисом Криком. Кстати, это в адрес Крика заметил тогда известный физик Ф. Дайсон, что ему жаль способного ученого, который упустил время, занимаясь военной наукой. А разница между военной наукой и наукой вообще такая же, как между военной музыкой и музыкой, и что вряд ли выйдет что-либо путное из нового увлечения Крика биологией. [c.131]

    Доктор Уотсон, в предисловии к вашей книге Двойная спираль вы утверждали, что широкая публика не представляет себе, как делается наука. И добавляли, что пути научных исследований почти столь же разнообразны, как человеческие характеры. Вы добились своего — привлекли внимание множества людей к событиям и отношениям в стенах того дома , где проходит жизнь сообш,ества ученых. Но ваш рассказ ограничен был узкими рамками — 1951-1953 годами. Побеседуем сегодня о том, что было до и что произошло (-послед. [c.134]

    Синтез (репликация) ДНК должен происходить таким образом, чтобы образовались две новые цепи двухтяжевой ДНК с той же самой последовательностью оснований, т. е. той же генетической информацией, что и родительская. Благодаря такому процессу из данной родительской клетки возникают две дочерние. Репликация становится возможной потому, что двухтяжевая родительская ДНК разделяется на отдельные нити, из которых каждая служит матрицей для синтеза новой спирали. Если бы две цепи были ковалентно связаны, энергия, необходимая для разделения цепей, была бы весьма значительной. Сохранение последовательности оснований в процессе репликации происходит благодаря высокой специфичности при образовании водородных связей между пуриновыми и пиримидиновыми основаниями. Так что, например, аденин на одной цепи двойной спирали всегда будет находиться напротив и образовывать водородные связи с тимином во второй цепи. При разделении цепей аденин из одной цепи всегда будет взаимодействовать с тимином в процессе синтеза новой комплементарной цепи. Аналогичным образом тимин, который находился напротив аденина в родительской двойной спирали, после разделения цепей будет взаимодействовать в процессе синтеза новой комплементарной цепи с аденином. Следовательно, на каждой из разделенных цепей родительской двойной спирали, как на матрице, синтезируются две новые цепи двухспиральмой ДНК, обладающие совершенно одинаковой последовательностью оснований с родительской молекулой. Такой механизм синтеза ДНК называется полуконсервативным механизмом репликации, поскольку исходная двойная спираль наполовину сохраняется (рис. 3.9), т, е, каждая из двух образовавшихся двойных спиралей содержит одну цепь из родительской молекулы. [c.148]

    В число примеров препаратов ненуклеозидной природы, ингибирующих синтез ДНК путем связывания с двойной спиралью, входят акридины (например, профлавин) и различные антибиотики (например, митоцнн С, адриамицин, дау-номицин). Способность акридинов связываться с ДНК и РНК вызвало их использование в биологии в качестве биологических красителей этих молекул. Связывание осуществляется путем интеркаляции плоская кольцевая система про-флавина, например, интеркалирует (протискивается) между парами оснований двойной спирали, образующих стопочную структуру. Можно ожидать, что такой бутерброд из ДНК и связанных с ней молекул красителя изменит свою геометрическую структуру (удлинит двойную спираль), что и наблюдается в действительности. [c.152]

    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Ча )-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Гснетическин код как троичный неперекрывающийся вырожденный код. [c.249]

    Стереорегулярные полимеры возникают благодаря наличию асимметрического атома углерода в макромолекуле полимера. Это — стереоизомеры. Их строение схематически показано на рис. 3, где зигзагообразная основная цепь для наглядности помещена в одной плоскости. Легко убедиться, что вращение вокруг простых связей в основной цепи с учетом валентного угла между связями —С—С— не приводит к разупорядочиванию относительного расположения заместителей. Специальные методы синтеза приводят к получению изотактических макромолекул, когда заместители расположены по одну сторону плоскости, синдиотактических, когда заместители находятся по разные стороны плоскости, и атактических, когда заместители ориентированы нерегулярно. Взаимное отталкивание заместителей, изображенных на рис. 3, приводит к тому, что они смещаются относительно друг друга в пространстве н поэтому плоскость симметрии оказывается на самом деле изогнутой в виде спирали. Структура спиралей характерна не только для макромолекул с углерод-углеродными связями в основной цепи, но и для других видов макромолекул, в том числе и для биологически активных (например, двойная спираль ДНК). Различные стереоизомеры имеют и разные механические свойства, особенно сильно отличающиеся от свойств атактических полимеров того же химического состава. [c.12]

    Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух переплетенных по-линуклеотидных цепей. Одна цепь изогнута в виде спирали и удерживает около себя вторую полинуклеотид-ную цепь. Образовавшаяся двойная спираль закручена вокруг общей оси, и основания обеих цепей обращены внутрь спирали. Здесь адениновые остатки одной цепи за счет водородных связей связаны с тиминовы.ми остатками второй цепи, а гуаниновые — с цитозиновыми. Благодаря такому взаимодействию оснований [c.431]

    Каждое основание связагю с углеводной частью М-гликозидной связью и данный структурный фрагмент называется нуклеозидом. Этерификация нуклеозида фосфорной кислотой по пятому положению углеводного остатка приводит к мононуклеотиду. Мононуклеотиды соединяются между-собой фосфорной кислотой, т. е. между ними формируется фосфорнодиэфирная связь. Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух переплетенных цепей ДНК. Основания обеих цепей обращены внутрь спирали и благодаря этому происходит спаривание оснований. Такое взаимодействие оснований одной цепи с основаниями другой цепи обеспечивает прочность двой-1ЮЙ спирали ДНК. Пары оснований, между которыми формируются водородные связи, называются комплементарными. [c.433]


Смотреть страницы где упоминается термин Двойная спираль: [c.185]    [c.61]    [c.61]    [c.345]    [c.3]    [c.7]    [c.111]    [c.113]    [c.115]    [c.144]    [c.115]    [c.187]    [c.61]    [c.87]    [c.64]    [c.88]   
Смотреть главы в:

Новая старая ДНК Уникальные черты самой главной молекулы или почему ученые разных специальностей в последнее время обращают на ДНК все больше внимания -> Двойная спираль


Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.0 ]

Химический энциклопедический словарь (1983) -- [ c.270 , c.394 ]

Симметрия глазами химика (1989) -- [ c.76 ]

Молекулярная биология (1990) -- [ c.0 ]

Биологическая химия (2002) -- [ c.95 ]

Химия Краткий словарь (2002) -- [ c.87 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.270 , c.394 ]

Биохимический справочник (1979) -- [ c.41 , c.47 ]

Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.53 , c.55 , c.144 ]

Биофизическая химия Т.1 (1984) -- [ c.168 , c.169 , c.174 ]




ПОИСК







© 2025 chem21.info Реклама на сайте