Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прочность комплексов

    Известны также комплексы полиолов с соединениями тяжелых металлов, например железа. Эта реакция комплексообразования применяется для маскировки некоторых ионов при проведении их анализа обычно в щелочной, но иногда и в кислой средах [32]. Прочность комплексов металлов с многоатомными спиртами возрастает в ряду гликоль — глицерин — маннит в том же ряду увеличивается кислотность полиолов [33, 34]  [c.17]


    Полнота протекания реакции увеличивается при повышении pH раствора (связывании ионов Н ). В некоторых случаях, однако, при повышении pH может образоваться гидроксид металла. Поэтому при работе с комплексонами требуется создание оптимального значения pH раствора, зависящего от прочности комплекса и растворимости соответствующего гидроксида. В табл. 9 приведены константы нестойкости некоторых ионов металлов с ионами этилендиаминтетрауксусной кислоты ( ). Например, ион Ре образует очень прочный комплекс с комплексоном П1 и очень труднорастворимый гидроксид. Реакция комплексообразования может происходить при pH не выше 3. Катион кальция образует сравнительно хорошо растворимый гидроксид и вступает в реакцию с комплексоном П1 при pH 9—10. Поскольку комплекс иона Са + менее прочен, чем комплекс иона Ре , проведение реакции при повышенном pH в случае кальция необходимо. Почти все приведенные в табл. 9 ионы образуют весьма прочные комплексы с комплексоном III. Связывается в комплекс даже такой слабый комплексообразователь, как ион лития. [c.153]

    Исследования [97] показали, что наибольшей деактивирующей способностью обладают соединения, образующие кольца из пяти или шести атомов. Прочность комплексного соединения, кроме числа атомов, зависит и от числа колец, образуемых данным соединением при комплексообразовании с медью. Большее число колец обусловливает большую прочность комплекса. Наиболее эффективные деактиваторы металлов найдены среди соединений, образующих с металлами так называемые внутрикомплексные соли. В таких соединениях один гетероатом связывается с металлом ионной связью, а другой — замыкает внутрикомплексное кольцо координационной связью. [c.253]

    Исследованные соединения, образующие с медью внутрикомплексные соли 2 типа, оказались наиболее эффективными деактиваторами. Соединения, образующие комплексы 1 и 3 типов, имеют меньшие деактивирующие свойства. Действительно, наибольшей устойчивостью должно обладать комплексное соединение именно 2 типа, поскольку оно имеет большее число внутрикомплексных колец (три). Комплексное соединение 3 типа тоже имеет около атома меди три кольца, но среднее кольцо составлено более чем восемью атомами, а наличие такого кольца не способствует увеличению прочности комплекса. [c.253]

    Можно указать и на довольно явную зависимость стабильности комплекса от степени окисления металла обычно более стабильные комплексы получаются при более низкой степени окисления металла (табл. 28). Данные таблицы явно демонстрируют роль дативной связи, чему обычно не уделяют внимания. Именно эта связь становится менее прочной для металлов с более высокой степенью окисления, и при этом прочность комплекса уменьшается. [c.100]


    Вместе с тем прочность комплекса существенно зависит и о строения олефина. Она обычно наибольшая у олефинов низкой мс [c.100]

    С точки зрения теории МО, основной причиной, определяющей низкую стабильность нестабилизированных а-комплексов переходных металлов, является малая разница в энергиях высшей занятой -орбитали металла и разрыхляющей а -молекулярной орбитали, связывающей металл с углеродом. Поэтому при незначительном возбуждении электронов металла они переходят на а -разрыхляю-щую орбиталь и деформируют комплекс. При координации металла и электронодонорного органического лиганда возникают дативные связи, благодаря которым разность энергий d- и а -орбиталей увеличивается, а, следовательно, возрастает прочность комплекса. Такая координация снижает влияние и второй причины дестабилизации — перехода электронов с а-связывающей на вакантную -орбиталь, которая при взаимодействии с электронодонорным лигандом оказывается заполненной. [c.103]

    Прочность комплексов фермент — лиганд (оценка свободной энергии сорбции] [c.24]

    Оказалось, что прочность комплекса существенно зависит от природы двойной связи [c.88]

    В еще большей степени возрастает прочность комплекса при [c.278]

    Эти эффекты еще увеличиваются у полимерных молекул, несущих большое число зарядов, например у нуклеиновых кислот. Прочность комплексов в этом случае может изменяться на несколько порядков при изменении ионной силы раствора. Например, двойная спираль ДНК есть комплекс двух отрицательно заряж енных полимерных анионов нуклеиновой кислоты. Поэтому для существования ДНК в виде двойной спирали нужно, чтобы ионная сила раствора не была бы слишком низкой. Конечно, говоря о таких огромных молекулах, можно рассуждать лишь качественно, так как использовать уравнение Дебая — Гюккеля, выведенное для точечных зарядов, неправомерно. [c.266]

    Инертность или лабильность вовсе не определяются прочностью комплекса. Так, ионы типа Ы1(С1Н)2 , Рс1(СМ)2-, Hg( lN) -лабильны, а соединения типа Со(СН) , Ре(СЫ) , Мо(СМ) инертны. Комплекс Мп(ОЫ) занимает промежуточное положение. Опыт показывает, что равновесие в растворе, содержащем М1(СН) , устанавливается примерно в 10 раз быстрее, чем в растворе Со(СЫ)д , хотя ионы никеля и кобальта очень сходны по их физико-химическим свойствам. Комплексы меди, одновалентные и двухвалентные, в сочетании с С1 , Вг , 50 и ЫНз являются лабильными. [c.337]

    Другой важной характеристикой комплексных растворов электролитов являются величины констант нестойкости сложных ионов, которые выражают собой прочность комплекса и связаны с изменением стандартной свободной энергии ДФ равенством  [c.337]

    Этот ряд называют спектрохимическим. Лиганды, находящиеся в начале ряда (в левой части), называются слабыми, а лиганды, расположенные в конце ряда (в правой части), — сильными. Как правило, прочность комплекса возрастает с увеличением силы лиганда. [c.294]

    В еще большей степени возрастает прочность комплекса при замене обычных лигандов на этилендиаминтетраацетатный ион (ЭДТА), занимающий три или шесть координационных мест (см. разд. 7.5). Реакцию образования очень прочных комплексных соединений щелочноземельных, редкоземельных и других металлов [c.261]

    Наиболее распространенный тип металлсодержащих соединений нефти относится к полилигандным комплексам, где в качестве лиганда могут быть любые молекулы из широкой гаммы гетероорганических соединений. Такие комплексы образуются при координащ1и атома металлов Ре, Со, V, К1,Сг, 2п и др. с атомами К, 8, О гетерогенных соединений. Прочность комплексов определяется природой гетероатома и металла. В связи со специфичностью донорно-акцепторных взаимодействий соли двухвалентной ртути предпочтительнее образуют комплекс с насыщенными сульфидами, а одновалентной - с арилсуль-фидами титан селективно взаимодействует с основными азотистыми соединениями и гораздо слабее - со многими другими гетеросоедине-ниями. [c.29]

    Значительные трудности представляет разделение смеси соединений различных РЗЭ. Эти элементы всегда встречаются вместе, и их соединения очень похожи по свойствам. Раньше для разделения их применяли дробную кристаллизацию (основанную на различии в растворимости). Чтобы получить чистые препараты, приходилось проводить тысячи операций по выделению кристаллов. В настоящее время соедннения РЗЭ разделяют, пропуская раствор солей РЗЭ через колонну, заполненную катионообменной смолой (в виде гранул). Данный метод основан на различной способности ионов РЗЭ к комплексообразованию, что связано с различием их ионных радиусов r , уменьшающихся при переходе от La к Lu вследствие лантаноидного сжатия. С уменьшением возрастает прочность комплексов Э+ с HjO, поэтому смола хуже адсорбирует находящие в водном растворе гидратированные ионы тяжелых лантаноидов. Степень разделения можно улучшить добавлением в раствор комплексообразователей. Для разделения РЗЭ используют также экстракцию. [c.603]


    В еще большей степени возрастает прочность комплекса при замене обычных лигандов на этилендиаминтетраацетат-ный ион (ЭДТА), занимающий три или шесть координационных мест. [c.194]

    Выше (гл. 1, разд. 1.3.4) было указано, что прочность комплексов металлов с полиолами возрастает в ряду гликоль С глицерин <1гексит (например, комплекс железа с маннитом 28 раз более прочен, чем с глицерином). Это позволяет катионам играть роль сокатализатора после расщепления молекулы гексита катион не остается связанным с образовавшимися молекулами низших [c.91]

    В. Д. Тюрин с соавторами [170] сообщили о разработке процесса обессеривания топлив с применением карбонилов железа, особенно додекарбонила Рез(СО)12, которые восстанавливают меркаптаны, сульфиды и дисульфиды до элементной серы, образуя прочные комплексы, в которые в качестве лигандов входят остатки КЗ (комплексные меркаптиды). Последние отделяются фильтрованием и адсорбцией и могут использоваться для получения концентрированных смесей сернистых соединений либо сульфоновых кислот. Благодаря высокой прочности комплексов удаляются не только низшие, но и высокомолекулярные соединения, содержа-Щ иеся как в легких светлых, так и в тяжелых нефтепродуктах — вплоть до мазута. Так, при очистке мазута содержание серы снижается с 0,56 до 0,23% (масс.). Наряду с уменьшением содержания серы понижается содержание азотистых и кислородных соединений (а в легких продуктах и диенов), так как эти соединения также образуют комплексы с карбонилами жел-еза. [c.268]

    Прочность комплексов препятствует обмену полупериод обмена составляет от одной до десяти недель. Добавка 10 М NaOH или НС1 сокращает полупериод обмена О на О до неизмеримо малого времени, а D на Н до 1 ч. Скорость обмена пропорциональна концентрации кислоты и не зависит от природы прочих катионов или анионов. [c.229]

    Как было указано, образование комплексов металлов с анионами щавелевой винной и др. кислот связано с замещением водородных ионов этих кислот.i Поэтому прочность комплексов зависит от концентрации ионов водорода. Комплексы более слабых кислот, как винная, легче разлагаются при подкислении раствора и, наоборот, становягся более устойчивыми при уменьшении концентрации ионов водорода. Анионы [c.107]

    Связь величины А с прочностью комплекса и концентрацией раствора можно установить следующим образом. Обозначим, как обычно, степень диссоциации комплекса через а. Интенсивность окраски раствора будет пропорциональна концентрации не-диссоциированной части, т. е. величине (I—а). Если в исходном растворе степень диссоциации была а, а после разбавления в п раз стала а , то ослабление интенсгшностн окраски (при наблюдении сверху) составит  [c.207]

    Прочность комплексов металлов с ЭДТА выражается константой диссоциации  [c.431]

    При сравнении с неферментативными комплексами значения k—i оказываются, как правило, меньше аналогичных констант скоростей. Причину этого следует искать как в рассмотренных стерических затруднениях, ограничивающих скорость диффузии в поверхностном слое белковой глобулы так и в высокой прочности многоточечных (хелатных) комплексов с участием ферментов (/fa oq раздел Прочность комплексов фермент — лиганд этой главы). Так, из табл. 5 видно, что даже молекула воды обменивается между раствором и координационной сферой Мп бйстрее в случай свободного иона, чем встроенного в активный центр пируваткиназы [65]. [c.31]

    Алифатические обратимые конкурентные ингибиторы. Как видно из рис. 37, сррбционный участок активного центра малоспецифичен по отношению к структуре алифатической цепи в молекуле ингибитора (алканолы). Независимо от того, является ли алифатическая цепь нормальной или разветвленной, эффективность обратимого связывания алканола КОН на активном центре определяется валовой гидрофобностью группы К. А именно, величина lg i, характеризующая прочность комплекса, возрастает линейно (с наклоном, близким к единице) со степенью распределения 1 Р этих соединений между водой и стандартной органической фазой (н-октанол). Наблюдаемая при этом величина инкремента свободной энергии переноса СНа-группы из воды в среду активного центра равна приблизительно —700 кал/моль (2,9 кДж/моль) (для низших членов гомологического ряда). Эта величина близка к значению инкремента свободной энергии, которое следует из известного в коллоидной химии правила Дюкло—Траубе [90—92] и характерна для свободной энергии перехода жидкой СНа-группы из воды в неводную (гидрофобную) среду [85]. Все это позволяет рассматривать гидрофобную область активного центра химотрипсина как каплю органического растворителя, расположенную в поверхностном слое белковой глобулы. Эта капля либо адсорбирует гидрофобный ингибитор из воды на поверхность раздела фаз, либо, будучи расположенной несколько углубленно, полностью экстрагирует его. С точки зрения микроскопической структуры гидрофобной области правильнее было бы рассматривать ее как фрагмент мицеллы, однако такая детализация представляется излишней, поскольку известно, что свободная энергия перехода н-алканов из воды в микроскопическую среду мицеллы додецилсульфата слабо отличается от свободной энергии выхода тех же соединений из воды в макроскопическую жидкую неполярную фазу [93]..  [c.142]

    Комплексообразователь и лиганды рассматриваются как заряженные неде-формируемые шары определенных размеров. Их взаимодействие учитывается по закону Кулона. Таким образом, химическая связь считается ионной. Если лиганды являются нейтральными молекулами, то в этой модели следует учитывать ион-дипольное взаимодействие центрального нона с полярной молекулой лиганда. Результаты этих расчетов удовлетворительно передают зависимость координационного числа от заряда центрального иона. В некоторых случаях правильно передается геометрия комплексов при координационном числе, равном двум, комплексы должны быть линейными при равном трем лиганды располагаются по вершинам равностороннего тpeyгoJп.никa и т. д. С увеличением заряда центрального иона прочность комплексных соединений увеличивается, увеличение его радиуса вызывает уменьшение прочности комплекса, но приводит к увеличению координационного числа. С увеличением размеров и заряда лигандов координационное число и устойчивость комплекса уменьшаются. [c.356]

    К j Прочность комплексов краун-эфиров опре-9 дсляется соответствием размера полости эфира радиусу иона металла. Поэтому, ис-Схема 13.6. пользуя различные краун-эфиры, можно по- [c.368]

    Константы образования однотипных комплексов зависят от ряда факторов, и прежде всего от природы центргшьного атома и лигандов. В комплексах с центрг1льиыми ионами, обладающими слабой поляризующей способностью, например с ионами 1целочных и щелочноземельных металлов, устойчивость растет по мере увепичения интенсивности электростатического взаимодействия между центральным ионом и лигандами чем больше заряды центрального иона и лигандов и чем меньше их радиусы, тем выше прочность комплексов. Эти катионы образуют более устойчивые комплексы с лигандами, содержащими элементы малых периодов (кислород, азот) и с нонами F . [c.376]

    Расщепление тетраминопроизводных Pd (II) до диаминов протекает так же как и у соединений Pt (II), с образованием диаминопроизводных транс-строения, но с большей скоростью и в более мягких условиях вследствие меньшей прочности комплексов палладия. [c.148]

    Свойства таких комплексных солей, как это видно на примере гидратов, в целом напоминают свойства обычных солей, хотя могут наблюдаться заметные отличия в растворимости, связанные С прочностью комплекса. Например, достаточна аелика прочность иона [Ад(ЫНз)2]" , поэтому количество ионов Ag+, которые будут существовать в его растворе, мало. Это количество ионов сопоставимо с количеством ионов, которые посылает в насыщенны раствор бромид серебра, но меньше того количества ионов, которые может послать в раствор хлорид серебра. Добавление раствора аммиака к осадку Ag l вызывает полное растворение осадкаа [c.259]

    Главная подгруппа. Все отрицательно трехвалентные элементы и азот гидразина и гидроксиламина и их производных в комплексных соединениях тетракоординационнью (аммониевые, фосфониевые и т. п. соли, и комплексные амины). При этом прочность комплексов уменьшается при переходе в подгруппе сверху вниз. Замещенные фосфины, арсины и стибины координируются ионами многих металлов. При этом насыщается координационное число фосфора, мышьяка или сурьмы. [c.205]

    Если разность энергий несвязывающей 2й-орбиты и разрыхляющей е -орбиты велика, то четвертый, пятый и шестой электроны располагаются на 2 -орбите (случай соответствующий сильному кристаллическому полю в терминологии теории кристаллического поля). Если эта разность мала, то четвертый и пятый электроны заполнят разрыхляющую е -орбиту, хотя присутствие электронов на ней понизит прочность комплекса (слабое поле). [c.261]

    Кроме собственно энергии связи устойчивость поликомплекса зависит и от других типов взаимодействий, в частности от взаимодействия между удаленными участками матрицы ( объемные взаимодействия). Изменение температуры и (или) природы растворителя влияет на суммарную энергию Гиббса комплексообра-зования и соответственно на прочность комплекса. Так, в стабилизации комплекса полиметакриловой кислоты с полиэтиленгли-колем в водной среде существенную роль играют гидрофобные взаимодействия, поэтому с повышением температуры прочность комплекса возрастает. При переходе от водной к водно-спиртовой среде изменяется характер взаимодействия и зависимость устойчивости поликомплекса от температуры меняет свой ход на обратный. [c.126]

    В еще большей степени возрастает прочность комплекса при замене обычных лигандов на этилендиаминтетразце-татный ион (ЭДТА), занимающий три или шесть координационных мест. Это используется в аналитической химии [c.201]

    Следует иметь в виду, что сравнивать прочность комплексов по величинам Кн можно только в том случае, если эти комплексы однотипны (как в приведенном примере). Для разнотипных комплексов тaкиx,кaк[Ag( N) Г и [Р1(СМ)4) " этот способ неприменим. [c.122]

    Возможность титрования отдельных ионов и в смесях с другими ионами зависит от прочности комплекса данного иона с ЭДТА и от pH среды. [c.161]

    При сорбции разнозарядных ионов, образующих в колонке близкие по своей прочности комплексы, порядок расположения их зон зивисит не только от общих констант стойкости, но и от состава в соответствии с уравнением (209). Поэтому в таких случаях нельзя делать однозначных выводов об относительной прочности комплексов по последовательности расположения их зон в хроматограмме. [c.250]

    Жесткие металлы взаимодействуют преимущественно с жесткими основаниями, прочность соответствующих комплексов убывает в ряду Р>С1>Вг, 0>5, Ы>Р. Мягкие металлы дают более устойчивые комплексы с мягкими основаниями, и прочность комплексов в этом случае убывает в ряду 1>Вг>С1>Ы>0>Р, причем координациоппое число уменьшается с увеличением поляризуемости лиганда. [c.228]


Смотреть страницы где упоминается термин Прочность комплексов: [c.316]    [c.170]    [c.42]    [c.242]    [c.365]    [c.374]    [c.79]    [c.85]    [c.570]   
Комплексоны (1970) -- [ c.0 ]

Комплексоны (1970) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте