Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец спектральный анализ

    В процессе изучения факторов, влияющих на степень химической деструкции НПАВ в пластовых условиях конкретных месторождений, были проведены спектральные анализы пород. При этом было установлено присутствие в них значительного количества металлов переходной валентности (медь, марганец, цирконий, кобальт, никель), которые, как известно, обладают каталитической активностью. Предварительными лабораторными опытами по определению химической деструкции НПАВ было установлено, что на стабильность последних существенное влияние оказывают сера и ее соединения. Поэтому при анализе пород различных нефтяных месторождений особое внимание было уделено содержанию серы (табл. 5). [c.28]


    Методом спектрального анализа можно определить в стали такие легирующие элементы, как хром, молибден, вольфрам, марганец, кремний, ванадий, титан, ниобий, никель и др. [c.37]

    Методом спектрального анализа определяют в зеркальном чугуне марганец и кремний в ферромарганце — марганец, кремний, углерод и фосфор в силикомарганце — марганец и кремний. [c.41]

    Выполнение работы. 1. Приготовление эталонов. Навеску прокаленной и проверенной качественным спектральным анализом на отсутствие определяемых примесей двуокиси кремния помещают в кварцевую чашку. Определяемые примеси (алюминий, железо, марганец, свинец, магний и др.) вводят в основу в виде титрованных 2%-ных азотнокислых растворов в пересчете на металл. После выпаривания содержимого в чашке досуха двуокись кремния прокаливают при 800° С и тщательно измельчают, растирая в агатовой ступке. [c.76]

    Куделя Е. С. Синтетические эталоны для спектрального анализа [на марганец, алюминий]. Зав. лаб., 1949, 15, № 6, с. 691— 695. 1222 [c.54]

    Прокопьева А. И. и Таганов К. И. Спектральный аиализ тонких никелевых проволок и фольги [на кремний, медь и марганец]. Зав. лаб., 1949, 15, № 3, с. 299—301. 5302 Прокофьев В. К. Спектральный анализ в заводской практике. [Методы и приборы]. Тр. Всес. конференции по аналит. химии,, [c.204]

    Яковлев Б. М. Спектральный анализ ковкого и серого чугуна на хром, марганец и кремний. Литейное производство, 1950, № 2, с. 8. 6401 [c.242]

    В тех случаях, когда необходимо подчеркнуть применимость данного реактива или препарата для определенной цели или отсутствие в нем некоторых примесей, после названия реактива указывается его дополнительная квалификация, а затем степень его чистоты. Например, бензол для криоскопии хч , магний окись для люминофоров хч , марганец сернокислый для спектрального анализа чда , судан Ж краситель для микроскопии чда , бром-тимоловый синий (индикатор) чда , глицин фото ч , кальций окись для хроматографии чда , кобальт сернокислый без никеля чда , калий бромистый фармакопейный ч и т. д. [c.17]

    В связи с тем, что элементы семейства железа — ванадий, хром, марганец, железо, никель, а также медь, свинец, молибден — являются основными компонентами нефтяных зол и занимают доминирующее положение среди других микроэлементов в золах изученных нефтей, было осуществлено их количественное определение (спектральным анализом). Средние значения содержания этих элементов по горизонтам сведены в табл. 44, из которой видно, что хотя зависимости между зольностью нефти и содержанием ванадия, хрома, марганца, железа, никеля, меди, свинца и молибдена не наблюдается, прямая связь между содержанием последних и глубиной залегания нефти в определенной степени выявляется. Важен и тот факт, что в золе исследованных палеогеновых нефтей Таджикской депрессии содержание приведенных выше восьми микроэлементов, особенно таких, как ванадий, никель, железо, молибден, выше, чем в золе третичных нефтей других регионов СССР, а в некоторых случаях даже выше, чем в золе палеозойских нефтей Волго-Уральской области. Сравнительные данные обобщены в табл. 45. [c.124]


    Количественным спектральным анализом были определены ванадий, хром, марганец, железо, никель, медь, свинец. Выбор именно этих элементов продиктован тем, что [c.132]

    Введенский Л. Е., Количественный спектральный анализ магниевых сплавов на алюминий, цинк, марганец и бериллий, Оборонгиз, 1940. [c.276]

    Марганец (П)сернокислый одноводный для спектрального анализа [c.33]

    При экстракции растворителями тяжелее воды был использован экстрактор с 25 трубками. Объектом анализа была морская вода, к которой предварительно добавляли 100 мл насыщенной хлорной воды. Затем пробу насыщали хлороформом. Неподвижной фазой служил 1%-ный раствор 8-оксихинолина в хлороформе (по 20 мл в каждой трубке). После 400 переносов через экстрактор проходило 8 л воды. В первых 24 трубках концентрировались золото, олово, свинец, кадмий, железо, никель, кобальт, марганец, медь, палладий, цинк, индий, лантан и молибден. Органическую фазу упаривали и анализировали спектральным методом. При использовании в качестве неподвижной фазы 0,05%-ного раствора дитизона в четыреххлористом углероде в органической фазе концентрировались таллий, золото, медь, палладий и платина. [c.132]

    Для определения примесей в алюминиевом сплаве анализируемому образцу придают форму электрода. Таким же образом подготавливают образцы трех эталонов, содержащих определенные количества примесей, обычно присутствующих в сплаве. Так, например, при анализе дюралюминия эталоны содержат магний, медь, железо, марганец. Кроме того, подготавливают образец железа, который служит стандартом, поскольку известны длины волн всех его спектральных линий. Кассету с фотопластинкой вставляют в спектрограф и открывают крышку кассеты. Образцы поочередно укрепляют в держателе электродов искрового генератора ИГ-3 и в стандартных условиях возбуждения (напряжение 220 В, сила тока [c.230]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Основные научные работы посвящены развитию общей химии и методов исследования химических веществ. Исследовал ( 837— 1842) органические производные мыщьяка. Установил формулу радикала какодила и изучил реакции окиси какодила с другими веществами, что послужило одной из предпосылок создания теории радикалов. Изобрел (1841) угольноцинковый гальванический элемент, с помощью которого осуществил электролиз расплавов ряда солей и получил чистые металлы (хром, марганец, литий, алюминий, натрий, барий, стронций, кальций и магний). Приготовил (1852) электролизом хлористого магния магнезию. Совместно с немецким физиком Г. Р. Кирхгофом разработал (1859) принципы спектрального анализа и с помощью этого метода открыл два новых химических элемента — цезий (1860) и рубидий (1861). Изобрел многие лабораторные приборы — газовую го- [c.85]

    Советские ученые В. В. Ковальский и С. А. Боровик, а также А. О. Войнар с помощью спектрального анализа обнаружили в головном мозге млекопитающих присутствие ряда тяжелых металлов (медь, цинк, марганец, кобальт, титан, хром, свинец, молибден, серебро и др.). [c.13]

    При определении следов элементов-примесей в хлористом кадмии для повышения чувствительности спектрального анализа была применена экстракция вещества-основы (кадмия) из йодидных растворов в форме двух соединений С(1Л2 и СдЛз П, 2]. В качестве органического растворителя в нашем случае был использован диэтиловый эфир. Указанный прием позволил сбросить большую часть вещества-основы, после чего водную азу выпаривали на графитовом коллекторе, и в сухом остатке определяли алюминий, железо, кальций, кобальт, магний, марганец, никель, титан, хром и цинк. [c.44]


    В золе исследуемых фракций нефтей Таджикской депрессии нолуколичественным спектральным анализом были обнаружены следующие микроэлементы натрий, медь, серебро, берилий, магний, кальций, стронций, барий, цинк, алюминий, лантан, кремний, олово, свинец, титан, цирконий, сурьма, висмут, ванадий, хром, молибден, марганец, железо, никель. Чтобы проследить распределение по фракциям тех микроэлементов (ванадий, хром, марганец, железо, никель, медь, свинец, молибден), которые были количественно определены в самой нефти, подобное определение их производилось и во всех изученных фракциях. Как видно из таблицы, микроэлементы распределены по фракциям неравномерно. Основная масса, например ванадия, сконцентрирована в асфальтенах и спирто-бензольных смолах, а никеля — в асфальтенах и петролейноэфирных маслах (исключение составляют фракции нефти Алмасы). Соответствук>щие данные показаны па рис. 5, 6. Что касается других микроэлементов (хром, марганец, медь, свинец, молибден), то в их распределении также наблюдается определенная закономерность. [c.127]

    Марганец(И) сульфаминовокислый см. Мар-ганец(Н) амидосульфат Марганец(П) сульфат, 1-водный, для спектрального анализа Марганец(И) сернокислый Мп504-Н20 2622150142 [c.286]

    Металлографические исследования показали наличие ыежкрис-таллитной коррозии разрушенных участков. Химический и спектральный анализы металла разрушенных участков показал,что штуцер термокармана был изготовлен из титана,содержащего 6,23% алоыиния и 5,34% ванадия. Дяя резьбового соединения был применен сплав титана, имеющий в своем составе 5,25% алюминия, 2,3% олова, 2,82% ванадия и 0,09% молибдена. Металл узла тонкой регулировки также содержал алюминий, марганец, молибден,цирконий и железо. [c.35]

    Растворимость других элементов не определена. Имеются лишь отрывочные данные о концентрациях примесей в порошкообразных люминофорах и монокристаллах халькогенидов. По данным спектрального и масс-спектрометрического анализов установлено, что щелочные металлы (Na, Li) часто встречаются в концентрациях 10" —10" ат. %. Концентрация примеси щелочноземельных металлов примерно такая же, хотя растворимость, например магния, может достигать 20 мол. % при 980° [33]. Переходные металлы и р. з. э. вводили в порошки и монокристаллы в концентрациях до 1 ат. %. Железо обычно содержится пли вводится в количествах от 10" до 10" ат. %, но известно, что его растворимость в сульфиде цинка достигает 40 мол. % (природные минералы — железистые сфалериты). Марганец вводят обычно в количестве 1%, но растворимость его составляет десятки процентов как в ZnS, так и в dS и dSe [34]. [c.35]

    Для анализа алюминиевого сплава образцу придают форму электрода. Таким же образо.м готовят образцы трех эталонов, близких по составу к анализируемому образцу, например, сплав дюралюминий содержит магний, медь, железо, марганец. Готовят также образец железа, так как он служит стандартом, поскольку известны длины волн всех его спектральных линий. Кассету с фотопластинкой вставляют в спектрограф и открывают крышку кассеты. Образцы поочередно укрепляют в держателе электродов искрового генератора ИГ-3 и в стандартных условиях возбуждения (при 220 В и 2 А) снимают спектры в следующем порядке образец железа, три эталонных образца, анализируемый образец и снова образец железа. После каждого снятия спектра кассету с фотопластинкой перемещают таким образом, чтобы после проявления на ней одно над другим были зафиксированы изображения шести спектров. После проявления и высушивания пластинку помещают в спектропро-ектор и находят на экране линии, соответствующие примесям в сплаве алюминия. С помощью микрофотометра МФ-2 (или другого) оценивают их почернение в сравнении с эталоном и определяют количественное содержание каждого элемента в анализируемом образце. [c.245]

    О влЕяшш метода и времеш гомогенизации на результаты анализа судили во разности почернений спектральных линий злеиентов и фона (табл.З). Из табл.З.видно,что кокс, растертый в вибромельницэ, загрязняется из истирателя такими элементами, как железо, марганец, никель,а в ступке - кремнием. Бшш изучены также зависимости стандартного отклонения S ) разности почернений спектральной линии и фона от метода и времени гомогенизации при истиранвзх коксов и и их зол (рисунок). [c.116]

    Еще один микрометод, основанный на анализе сухого остатка, заключается в следующем. На токарном станке из спектральных углей вырезают диски диаметром 4 мм и толщиной 0,5 мм, которые дополнительно очищают обжигом в дуге постоянного тока силой 12 А в течение 15 с. Затем на диск наносят микропипеткой 20 мкл анализируемого раствора, сушат под ИК-лампой при 80 °С и помещают в кратер нижнего электрода, который служит анодом дуги постоянного тока. Достигнуты следующие абсолютные пределы обнаружения (в нг) qpeб-ро — 0,08 висмут — 0,4 магний, марганец, медь — 0,5 алюминий, кремний, молибден, титан — 2 ванадий, кобальт, хром, цинк — 3 железо — 4 никель, олово — 5 кальций — 6 свинец— 7 кадмий, сурьма — 10 мышьяк — 90. При увеличении толщины дисков свыше 1,5 мм резко ухудшаются чувствительность и точность анализов [52]. [c.27]

    Кинетические методы анализа могут применяться как для определения сравнительно больших концентраций, так и для определения очень малых концентраций различных веществ. В первом случае, как правило, используют обычные реакции, во втором — каталитические. Использование некаталитических реакций и определение средних концентраций при помощи кинетических методов представляет интерес преимущественно для органической химии. Каталитические реакции особенно важны для определения очень малых концентраций различных ионов в неорганическом анализе, так как они характеризуются исключительно высокой чувствительностью, примерно равной чувствительности активационного анализа и превосходящей чувствительность спектрального и спектрофотометрического методов анализа. Чувствительность последних двух методов почти никогда не превосходит сотых долей микрограмма в миллилитре. При помощи каталитических реакций можно определить тысячные, десятитысячные и даже миллионные доли микрограмма в миллилитре. Например, золото и марганец при помощи каталитических реакций определяют 2. з при концентрации их порядка 0,00001 мкг/мл, а кобальт даже при концентрации 0,000001 мкг/мл. [c.10]


Смотреть страницы где упоминается термин Марганец спектральный анализ: [c.195]    [c.106]    [c.134]    [c.184]    [c.68]    [c.124]    [c.246]    [c.76]    [c.116]    [c.76]    [c.116]    [c.17]    [c.270]    [c.21]   
Технологические трубопроводы нефтеперерабатывающих и нефтехимических заводов (1972) -- [ c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральный анализ



© 2024 chem21.info Реклама на сайте