Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомно-эмиссионный спектральный анализ количественный

    Методы атомно-эмиссионного спектрального анализа. Различают качественный и количественный методы анализа. Задача качественного анализа - идентификация элементов пробы. Качественный анализ может быть полным (идентификация образца неизвестного происхождения) или частичным (на определенные элементы) в зависимости от поставленных задач. [c.521]


    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]

    Количественный атомно-эмиссионный спектральный анализ основан на том, что теоретически существует линейная корреляция между логарифмом отношения интенсивностей линий аналитической пары и логарифмом относительной концентрации определяемого элемента и элемента сравнения. Однако линейная корреляция между почернением 5 и логарифмом интенсивности 7 соблюдается только для области нормальных почернений характеристической кривой. Поэтому и уравнение (14.60) корректно применять лишь в пределах этого линейного участка. [c.404]

    Спектральный анализ - это анализ качественного и количественного состава веществ по атомным, молекулярным или ионным спектрам испускания или поглощения. Если исследованию подвергается спектр испускания (излучения), анализ называют эмиссионным, если же исследуется спектр поглощения, - абсорбционным. Существуют другие, более сложные спектры, которые используются в научных исследованиях, например, спектры комбинационного рассеяния. [c.520]

    К оптическим методам анализа относится совокупность методов качественного и количественного анализов по интенсивности инфракрасного (ИК), видимого и ультрафиолетового (УФ) излучения. Это атомно-абсорбционный, эмиссионный спектральный, люминесцентный анализы, турбидиметрия, нефелометрия и фотометрический анализ, под которым обычно понимают методы регистрации поглощения молекулами определяемого компонента излу-чения в ИК, видимой и УФ-областях. [c.131]

    Эта формула является основным, но не единственным математическим выражением градуировочных кривых, которые строят при проведении количественного атомно-эмиссионного спектрального анализа. При определении высоких содержаний элементов, когда указанные выше предпосылки уже не выполняются и становятся значимыми различные нелинейные эф фекты, математическая модель градуировочной характеристики нуждается в уточнении. Часто достаточно хорошее согласие с опытом можно получить, описывая градуировочную зависимость полиномом вида  [c.56]


    КОЛИЧЕСТВЕННЫЙ АТОМНО-ЭМИССИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ [c.671]

    Спектральный анализ. В широком смысле слова это название включает целый набор методов качественного и количественного анализа, основанных на использовании спектров испускания (эмиссионных), поглощения, отражения и люминесценции. Исторически и практически наиболее важен классический атомно-эмиссионный спектральный анализ, предназначенный для качественно-1 о и количественного элементного анализа вещества. Он позволяет определять практически все элементы периодической системы в широчайшем диапазоне концентраций - от 10 % мае. (10 г/л) [c.455]

    К собственно химическим методам исследования относятся синтез минералов и являющихся продуктами процесса соединений, изучение их состава и поведения в разных условиях при взаимодействии с теми или иными реагентами, а также фазовый химический анализ изучаемых продуктов. Обычно химические методы не используются изолированно, а сочетаются с физико-химическими и все чаще—физическими методами. Даже простая операция количественного определения pH или Ен раствора основана на применении потенциометрии — физико-химического метода. Да и определение качественного и количественного состава вещества проводят не только химико-аналитическими методами, а с широким использованием физических и физико-химических методов анализа (эмиссионного и атомно-абсорбционного спектрального, рентгеноспектрального, активационного и др.). Для обеспечения правильности результатов анализа применяют стандартные образцы веществ и материалов, состав которых установлен на основе комплексного использования химических и различных инструментальных методов. [c.199]

    Атомный спектр любого элемента является характерным, т. е. атомы этого элемента при определенных условиях излучают всегда постоянное число линий с точно известными длинами волн. Поэтому, обнаружив в спектре анализируемого вещества несколько линий (обычно 2—3), характерных для данного элемента, можно сделать вывод о его присутствии. Такой метод называют качественным эмиссионным или атомно-эмиссионным спектральным анализом. Он относится к физическим методам анализа и может быть использован как для качественного, так и для количествен ного анализа. Для расшифровки спектров применяют таблицы спектральных линий. [c.389]

    Эмиссионная спектроскопия, нашедшая широкое применение в-атомной спектроскопии, для изучения молекул используется реже. Эмиссионные спектры возникают путем возбуждения электронов в атомах или молекулах при сообщении им избыточной энергии извне и последующего возвращения их в основное состояние с испусканием квантов энергии в виде излучения строго определенных частот. Для перевода вещества в возбужденное состояние нередко применяют пламя горелки, дуговой или искровой разряд. Однако нри этом многие химические связи в молекулах разрываются и наблюдаемый эмиссионный спектр представляет собой спектр продуктов диссоциации — радикалов, атомов и ионов. В то же время именно это делает метод эмиссионной спектроскопии одним из плодотворных экспериментальных приемов для изучения радикалов, играющих решающую роль в протекании многих цепных реакций. Эмиссионные спектры используются также для изучения электронных оболочек атомов, свойств среды, образованной совокупностью атомов, получения некоторых сведений о состоянии ядер атомов, а также для целей качественного и количественного атомного спектрального анализа. [c.157]

    Характеристичность линейчатых спектров лежит в основе качественного эмиссионного спектрального анализа, а функциональная зависимость между концентрацией элемента в пробе и интенсивностью его спектральных линий положена в основу количественного анализа. Для их осуществления вещество пробы переводят в состояние плазмы, в котором элементы частично находятся в виде атомного пара , и ее излучение разлагается з спектральном приборе в спектр. Затем спектральные линни идентифицируют (качественный анализ) и измеряют их интенсивность (количественный анализ). [c.8]

    Спектральные методы анализа основаны на изучении оптических спектров испускания или поглощения. Различают атомно-абсорбционный метод спектрального анализа (анализ по спектрам поглощения) и эмиссионный спектральный анализ (анализ по спектрам испускания). Спектральный анализ щироко применяют для качественного и количественного анализа различных веществ. По характеристическим линиям спектра можно определять элементный состав вещества, а интенсивность спектральной линии является мерой концентрации вещества в пробе. [c.179]

    Остановимся еще раз на отдельных, наиболее важных методах анализа минерального сырья. В геологической службе широко распространены спектральные методы, особенно эмиссионный спектральный анализ. Огромное число проб — примерно восемь миллионов в год — анализируют методом полуколичественного спектрального анализа, используя разработанный в СССР (А. К. Русанов и др.) способ вдувания порошков в дугу. Это основной прием, применяющийся при поиске скрытых месторождений полезных ископаемых. Используют, конечно, и количественные методы. Существуют трудности при изготовлении стандартных образцов для спектрального анализа, пока мало используется предварительное концентрирование микроэлементов. Как уже говорилось, недостаточно применяются атомно-абсорбционные методы, что обусловлено отсутствием массового отечественного производства атом-но-абсорбционных спектрофотометров. Эти методы используют для определения кальция, магния, меди, свинца, цинка. [c.110]


    Разновидностью атомно-абсорбционного анализа является фотометрия пламени (пламенная фотометрия) — оптический метод количественного элементного анализа по атомным спектрам поглощения или испускания. Пламя может использоваться не только как атомизатор при измерениях сигнала атомной абсорбции (см. раздел 2.1), но и служить источником возбуждения эмиссионных спектров элементов. В последнем случае это термическая пламенная фотометрия — вариант эмиссионного спектрального анализа, который широко используется в аналитической практике при определении металлов [3, 8]. [c.245]

    Другим важным приемом, которым пользуются в аналитической химии для перевода элементов в какое-либо определенное состояние, является разложение веществ в плазме высокотемпературного пламени в плазме вольтовой дуги или в плазме искрового разряда. В этом случае химические соединения при соответствующем подборе температуры плазмы почти полностью диссоциируют до свободных атомов. Используя оптические свойства элементов в атомарном состоянии, можно производить качественный и количественный анализ. На этом принципе основаны эмиссионный спектральный анализ (регистрируется интенсивность излучения в пределах той или иной спектральной линии) и атомная абсорбционная спектроскопия, включающая и пламенную фотометрию (определяется степень поглощения монохроматического излучения при прохождении луча через плазму). [c.7]

    Группа методов электронной УФ спектроскопии охватывает оптические спектры не только в ультрафиолетовой (УФ), но и в видимой (ВИ) и самой ближней ИК областях, связанные с переходами между различными электронными состояниями атомов и молекул. Электронные переходы атомов и связанные с ними спектры в указанных областях являются основой атомного эмиссионного и абсорбционного спектрального анализа. Высокотемпературный нагрев вещества, например, в вольтовой дуге или искровом разряде, как это делается при эмиссионном спектральном анализе, переводит образец в парообразное, обычно атомарное состояние, причем атомы химических элементов, входящих в состав вещества, возбуждаются. Излучение, возникающее при переходах атомов в основное электронное состояние, и дает линейчатый спектр, используемый для качественного и количественного элементного анализа, который, как и вся группа связанных с ним спектральных методов, здесь рассматриваться не будет. [c.294]

    В спектральном атомно-эмиссионном (молекулярно-эмиссионном) методе анализа выходной аналитический сигнал связан с интенсивностью спектральной линии (или молекулярной полосы). В основе количественного анализа лежит однозначная связь между концентрацией элемента в пробе и выходным аналитическим [c.103]

    Возникновение оптических спектров не только подтвердило дискретную природу энергетических состояний электронов в атомах, но и позволило разработать спектральные методы качественного и количественного определения примесей одних веществ в других веществах атомно-абсорбционный, пламенно-фотометрический, лазерный атомно-ионизационный, оптический эмиссионный спектральный анализ. Качественный спектральный анализ основан на обнаружении в оптическом спектре характерных для данного элемента спектральных линий при помощи точного определения длин волн этих линий. [c.533]

    Количественный атомно-эмиссионный анализ основан на эмпирической зависимости между интенсивностью спектральной линии определяемого элемента и концентрацией его в пробе. В общем виде эта зависимость описывается уравнениями, предложенными Ломакиным (1930 г.)  [c.671]

    При атомно-эмиссионном спектральном анализе вещество переводят в паровое состояние. Испускаемые юзбужденными атомами или ионами световые волны разлагаются в спектр. По характерным линиям в спектре атомов можно идентифицировать элементы, содержащиеся в анализируемом образце качественный спектральный анализ), а по интенсивности спектральных линий можно определить их количественный состав количественный спектральный анализ). [c.307]

    Эмиссионным, или атомным, спектральным анализом называют метод исследования элементного (качественного и количественного) состава вещества по спектру излучения его атомов .  [c.4]

    В книге изложены основные теоретические положения наиболее распространенных методов спектрального анализа вещества (эмиссионного спектрографического, пламенно-фотометрического и атомно-абсорбционного). В учебном пособии дано описание лабораторных работ, необходимой аппаратуры и приведены примеры использования методов количественного спектрального эмиссионного и атомно-абсорбционного определения ряда элементов в различных объектах. [c.2]

    Имеющиеся в литературе данные показывают, что зонная плавка и родственные ей процессы находят применение для аналитического концентрирования примесей в различных неорганических и органических материалах. Для анализа концентратов используют эмиссионный спектральный [56, с. 405 104 124 138, с. 157 145 146 150] и рентгенофлуоресцентный [147] анализ, атомно-абсорбционную фотометрию пламени [150, 152], спектрофотометрию [150, 151], люминесцентный анализ [153, 154], масс-спектрометрию [147], полярографию [56, с. 405 139], измерения электропроводности [56, с. 407]. В большинстве работ концентрирование является практически количественным, нижние границы определяемых содержаний уменьшаются за счет концентрирования на один порядок. Длительность многопроходной зонной плавки обычно составляет от нескольких десятков до сотни часов, но практически весь процесс концентрирования протекает автоматически в заданном режиме и не нуждается во вмешательстве аналитика. [c.79]

    СЛЕДОВ ОПРЕДЕЛЕНИЕ, количественное определение в анализируемом в-ве примесей (элементов, ионов, хи>т. соед., фаз и т. п.), масса к-рых не превышает 1 мкг, а массовая доля — 0,01%. Для этого применяют эмиссионный спектральный анализ, масс-спектрометрию, нейтронно-активац. анализ, атомно-абсорбц. анализ с непламенной ато-млзацией, инверсионную вольтамперометрию, люминесцентный анализ н др. Первые два метода, позволяющие определять сразу большое число элементов, используют также для общей оценки чистоты материалов. Иногда предварительно проводят относит, иля абсолютное концентрирование определяемых примесей. Все операции осуществляют в условиях, обеспечивающих низкие значения поправки холостого (контрольного) опыта. Б микрообластях анализируемого образца конц. или кол-во примесей устанавливают методами локального анализа. [c.531]

    В связи с этим во многих лабораториях мира широким фронтом начали вести исследования по разработке высокочувствительных методов количественного определения следов элементов. Прежде всего получили развитие эмиссионный спектральный анализ, а также спектрофотометрический и полярографический методы. После того как химикам-апалитикам стали доступны атомные реакторы и ускорители частиц, все больше и больше стали использовать радиоактивациоппые методы анализа, а в последние годы масс-спек-тральный анализ. Таким образом, наблюдается непрерывное развитие инструментальных физических методов анализа следов. [c.5]

    Основными методами количественного определения скандия являются. спектральный, комплексонометриче-скнй, фотометрический. Эмиссионный пламенно-фотометрический и атомно-абсорбционный методы обладают в отношении скандия низким пределом обнаружения. Ввиду разнообразия скандийсодержащих объектов и недостаточной избирательности органических реагентов, предложенных для определения скандия, применению фотометрических методов предшествует отделение скандия от сопутствующих элементов. Практически часто при анализе технических и природных материалов применяется довольно специфичное осаждение скандия тартратом аммо- [c.206]

    Большой прогресс в изучешш микроэлементов в пищевых продуктах связан с успехами инструментальных методов анализа, в том числе эмиссионной спектроскопии, атомной абсорбщ1и, полярографии. Сначала большие надежды возлагались на методы эмиссионной спектроскопии, позволявшей из одной пробы проводить анализ большого числа элементов. Однако вскоре выяснилось, что на количественное определение сильно влияют присзггствие многих элементов в пробе ( матричный эффект ). Дня устранения влияния матричного эффекта рекомендуется готовить эталоны ( основы ) очень сложного состава, который сильно варьирует в зависимости от вида продукта [5]. При этом проверку правильности приготовления эталонов рекомендуется проводить другими независимыми методами (химическими, атомноабсорбционными и др.). Это сильно усложнило анализ, а без учета матричного эффекта метод эмиссионной спектроскопии для многих элементов вызовет ряд серьезных погрешностей [5]. Впрочем, во многих случаях и подобная фактически полуколичественная оценка представляет для гигиенистов определенный интерес и поэтому спектральные данные наряду с другими были использованы в настоящем справочнике (например, данные по бору, хрому, молибдену, алюминию). [c.341]


Библиография для Атомно-эмиссионный спектральный анализ количественный: [c.497]   
Смотреть страницы где упоминается термин Атомно-эмиссионный спектральный анализ количественный: [c.294]    [c.622]    [c.324]    [c.379]    [c.43]    [c.679]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ атомно-эмиссионный

Анализ атомный

Анализ количественный

Анализ эмиссионный

Анализ эмиссионный спектральный

Атомно-эмиссионный спектральный анализ

Спектральный анализ

Спектральный эмиссионный

гом эмиссионный



© 2025 chem21.info Реклама на сайте