Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, спектральный анализ

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    По заданию групп технического надзора, ремонтных и других служб предприятия выполняет работы по механическим испытаниям, химическому и спектральному анализам металлов, металлографическому анализу, по неразрушающим методам контроля. [c.76]

    Метод основан на визуальном изучении спектра анализируемого вещества, наблюдаемого через окуляр спектрального прибора (наиболее распространены стилоскопы и стилометры). Идентифицируя линии в спектре, проводят качественный анализ, а оценивая их относительные интенсивности, — полуколичествен-ный и количественный анализ. Визуальный спектральный анализ отличается простотой техники эксперимента, экспрессностью и наглядностью, а также невысокой стоимостью аппаратуры. К недостаткам визуального метода следует отнести субъективный характер оценки спектра, высокие пределы обнаружения элементов, за исключением щелочных и щелочноземельных металлов, и низкую воспроизводимость определений. [c.12]

    Существует также ряд способов оценки количества продуктов износа непосредственно в масле, когда для определения концентрации в масле соответствующих металлов проводят химический или инструментальный анализ. Инструментальные методы (в частности, колориметрический, фотоколориметрический, полярографический и спектральный) предпочтительнее, чем трудоемкие химические методы. Наибольшие преимущества имеют методы спектрального анализа, позволяющие одновременно определять содержание нескольких элементов. При использовании аналитических методов следует иметь в виду, что некоторые металлы могут попадать в масло не только как продукты износа, но и из других источников (например, в составе атмосферной пыли, в результате коррозии), поэтому содержание продуктов износа, определяемое химическим и спектральным анализами, может быть завышено. [c.17]

    В процессе изучения факторов, влияющих на степень химической деструкции НПАВ в пластовых условиях конкретных месторождений, были проведены спектральные анализы пород. При этом было установлено присутствие в них значительного количества металлов переходной валентности (медь, марганец, цирконий, кобальт, никель), которые, как известно, обладают каталитической активностью. Предварительными лабораторными опытами по определению химической деструкции НПАВ было установлено, что на стабильность последних существенное влияние оказывают сера и ее соединения. Поэтому при анализе пород различных нефтяных месторождений особое внимание было уделено содержанию серы (табл. 5). [c.28]


    Химический состав пленки (содержание Сг, N1, Т ) определялся на спектрографе ИСП-22 с применением токов высокой частоты, проходящих по поверхности (в пленке) и не захватывающих основной металл, спектральным анализом без отделения пленки от основного металла. [c.81]

    С помощью спектрального анализа можно определить все известные металлы. Спектральный анализ исключительно расширил рамки исследования вещества и даже позволил установить наличие отдельных элементов, входящих в состав солнца и некоторых звезд. [c.10]

    Щелочные металлы. Спектральный анализ. Щелочноземельные металлы кальций, стронций и барий. Полугруппа магний, цинк, кадмий и ртуть. Законы теплоемкостей, изоморфизма и аналогии. [c.172]

    В настоящее время известно около 50 различных химических и физических методов количественного анализа. Главное отличие химических методов заключается в том, что они основаны на химических реакциях. В физических методах анализа химические реакции или вовсе не используются, или имеют второстепенное значение (например, химические процессы в пламени дуги или искры при спектральном анализе металлов). Наиболее распространенными химическими методами анализа являются весовой, объемный, колориметрический, полярографический. Наиболее распространенным физическим методом количественного анализа является спектральный анализ. [c.16]

    Качественный фотографический спектральный анализ позволяет судить о наличии в анализируемом веществе примесей многих металлов и многих неметаллов при их содержании 10" —10 %. [c.29]

    Для получения искрового разряда используются различные искровые генераторы. Искра является идеальным источником света в спектральном анализе металлов и сплавов при определении средних концентраций. Этот метод широко используется в металлургическом производстве для экспрессного анализа воспроизводимость результатов анализа до, [c.51]

    Мандельштаме. Л. Введение в, спектральный анализ. Гостехиздат, 1946 Прокофьев В. К. Фотографические методы количественного спектрального анализа металлов п сплавов, ч. II. Гостехтеоретиздат, 1952. [c.872]

    Следует отметить, что на частицах сернистого железа адсорбируются не только органические вещества, но и неорганические соли различных металлов Это устанавливается спектральным анализом, который показал, что в составе взвещенных веществ в незначительном количестве содержатся соединения титана, меди, марганца и никеля. [c.62]

    Наконец, из данных, приведенных в табл. 19, видно, что методами спектрального анализа удалось проследить характер распределения металлов во всех высокомолекулярных компонентах пефти, включая как неуглеводородные компоненты (смолы и асфальтены), так и углеводороды разной степени разделения и их смеси (мазут). [c.67]

    Ответить на этот вопрос удалось в 1889 году английскому ученому Людвигу Монду. Спектральным анализом он обнаружил в составе газовой смеси комплексные соединения оксида углерода с металлами — тетракарбонил никеля, а затем пентакарбонил железа. При нагревании в пламени эти соединения легко разлагаются на составляющие, оставляя блестящую пленку металла на стенках сосуда, в котором проводился опыт. [c.133]

    Следующим этапом обучения является освоение техники фотографического спектрального анализа. Здесь в первую очередь необходимо приобрести навыки фотографирования спектров и получения качественных снимков. Параллельно с этим стоит затратить определенные усилия на расшифровку спектра железа, который во многих задачах спектрального анализа играет роль опорного при отождествлении спектральных линий других элементов. Приобретенные при этом навыки оказываются необходимыми при выполнении качественного анализа порошкообразной пробы на присутствие металлов. [c.93]

    Общеизвестно большое значение эмиссионного спектрального анализа, особенно для определения малых количеств загрязнений и добавок в сплавах, примесей в минералах. От высокой температуры искры или электрической дуги возбуждается спектр испускания металлов — эмиссионный спектр. Излучение разлагается специальными приборами — спектрографами и фотографируется. Для наблюдения спектров в увеличенном виде применяют спектро-проекторы (рис. 1). [c.19]

    В. К. Прокофьев. Фотографические методы количественного спектрального анализа металлов и сплавов. Гостехиздат, 1951, ч. 1, (368 стр.), ч. 2 (327 стр.). В первой части рассматриваются свойства призменных спектрографов, конструкции наиболее употребительных образцов спектрографов, источники света, электроды для спектрального анализа, микрофотометры и спектропроекторы. Вторая часть посвящена описанию методов количественного спектрального анализа. В приложении даны таблицы аналитических пар линий, применяемых при количественном спектральном анализе различных сплавов сталей, чугунов, магниевых и алюминиевых сплавов, бронз, баббитов и др., а также чистых металлов. В конце книги приведен большой список литературы. [c.488]


    К особым случаям предварительных испытаний с помощью спектрального анализа относится идентификация редких металлов. При рассматривании в ручном спектроскопе спектра редких металлов, образующегося при прохождении через них солнечного света, видны четкие полосы поглощения. [c.41]

    Эмиссионный спектральный анализ позволяет проводить качественное обнаружение и количественное определение всех металлов и ряда неметаллов. Преимуществом метода являются его быстрота и чувствительность определения при крайне незначительном расходе анализируемого вещества. [c.369]

    Для исследования неорганических объектов — металлов, сплавов, руд, минералов, растворов солей и т. п. применяют эмиссионный спектральный анализ в ультрафиолетовой и видимой частях спектра. Его с успехом используют также для определения ничтожных посторонних примесей во многих материалах, которые должны удовлетворять условию особо высокой и сверхвысокой чистоты, как, например, полупроводниковые материалы. [c.181]

    К ним относятся металлы и сплавы. При спектральном анализе решаются следующие основные задачи. [c.114]

    Преимз7пества спектрального анализа заключаются, как известно, п его высокой чувствительности (степень чувствительности зависит в значительной мере от техники эксперимента и качества аппаратуры), позволяющей успешно обнаруживать и полуколичественпо определять 0,001—0,1% висмута одновременно с другими элементами из минимальных навесок в свинце, меди, олове, сурьме, различных сплавах, минералах, рудах, горных породах, биологических материалах. Необычайная простота исследования обеспечивает быстроту определения при серийных анализах металлов. Спектральный анализ требует наличия сравнительно дорогой аппаратуры и специально подготовленных кадров. При помощи спектрального анализа в некоторых полиметаллических рудах был открыт висмут, произведены исследования громадного количества руд ц минералов на содержание висмута и других металлов, изучено распределение висмута в полупродуктах свинцовых заводов и др. [c.12]

    Опробованию в два этапа (зимой и летом) подвергались снежный покров, грунты, поверхностные воды в 25-30 фиксированных точках площадок КС, что позволило составить сопоставимые серии карт распределения отдельных химических компонентов в различных средах. В снеге, поверхностных водах и водных вытяжках из грунтов определялось содержание основных компонентов общей минерализации, соединений азота, ДЭГа, метанола, фенолов, ароматических углеводородов, металлов (спектральным анализом на 32 компонента). В грунтах спектральным анализом определено содержание металлов. [c.107]

    R таблице приведены ориентировочные данные о наименьших весовых количествах элементов, которые могут быть обнаружены с помощью эмиссионного спектрального анализа а электрических источниках света (дуге, искре, разрядной трубк з). Приведенные значения получены для разных элементов различными техническими приемами, обеспечивающими достижение максимальной чуйствительности. Данные для металлов относятся, как правило, к анализу микрообразцов, содержащих только определяемые элементы, дан ные для газов — к анализу газовых смесей. [c.720]

    Потенциал ионизации представляет собой энергию, необходимую для отрыва одного электрона от атома или иона. По первому потенциалу ионизации элемента можно оценить оптимальную температуру плазмы, при которой ионизация его нейтральных атомов еще не будет проявляться, а резонансные спектральные линии будут иметь максимальную интенсивность. При возбуждении легкоионизируемых элементов (щелочные и щелочноземельные металлы) используют низкотемпературные пламена, для среднеионизируемых элементов (остальные металлы) — дуговой разряд или высокотемпературные пламена и, наконец, для неметаллов — искровой разряд. Для подавления ионизации и поддержания постоянной температуры плазмы в течение экспозиции при эмиссионном спектральном анализе проб различного состава в них вводят буферные компоненты, содержащие элементы с подходящими потенциалами ионизации. [c.11]

    Наряду с детальным химическим анализом смолисто-асфальтеновых компонентов с целью количественной характеристики концентрационного распределения в них ванадия и никеля, был проведен также спектральный анализ всего комплекса металлов в тех же фракциях смолисто-асфальтеновых веществ всех трех нефтей (табл. 19). Кроме того, спектральным методом был исследован характер распределения металлов между высокомолекулярной углеводородной частью и смолисто-асфальтеновыми компонентами ромашкинской и бавлинской нефтей (табл. 20). [c.62]

    Химический состав металла, отобранного согласно ГОСТ 7565-81 и ГОСТ 7122-81, определяют стандартными методами аналитического или спектрального анализа. При исследовании макрошлифов основного металла определяют наличие или отсутствие микро- и макрорасслоений, НВ и других дефектов. Выявляют наличие и размеры дефектов металла сварных соединений и проверяют соответствие качества сварных швов нормативным требованиям [113]. [c.163]

    При спектральном анализе металлов и сплавов наиболее часто в качестве источника света используют высоковольтную конденсированную искру (рис. 3.4). Повышающий трансформатор заряжает конденсатор С до напряжепия, 10—15 кВ. Значение напряжения определяется сопротивлением вспомогательного промежутка В, которое в свою очередь выбирают всегда большим сопротивления рабочего промежутка А. В момент пробоя вспомогательного промежутка одновременно происходит также и пробой рабочего промежутка. В момент пробоя конденсатор С разряжается, а затем снова заряжается. В зависимости от параметров схемы и скорости деионизации промежутка следующий пробой может произойти или в этом же, или в другом полупериоде. [c.62]

    Количественный учет влияния всех процессов в пламени — задача практически неразрешимая. Поэтому метод эмиссионной фотометрии пламени, так же как и все методы спектрального анализа, яйляетсд относительным. Для определения концентрации какого-либо металла необходимы эталоны, которые просто приготовить в виде растворов. [c.13]

    РУБИДИЙ (Rubidium, название от характерных линий спектра, лат. rubidus — темно-красный) Rb — химический элемент I группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 37, ат. м. 85,4678. Природный Р. состоит из двух изотопов, один из которых радиоактивен. Известны 16 искусственных радиоактивных изотонон. Р. открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом спектральным анализом минеральных вод. Получают Р. вместе с цезием из карналлита и лепидолита. Самостоятельных минералов не имеет. Р.— мягкий серебристо-белый металл, химически активен, самовоспламеняется на воздухе, с водой и кислотами взаимодействует со взрывом. В соединениях Р. одновалентен. Среди солей Р. важнейшие галогениды, сульфат, карбонат и некоторые др. Р. применяют для изготовления фотоэлементов, газосветных трубок, сплавов, в которых Р. является газопоглотителем, для удаления следов воздуха из вакуумных ламп соединения Р. применяют в медицине, в аналитической химии и др. [c.216]

    В качестве источника возбуждения при анализе металлов используют преимущественно искру, а при анализе иеэлектропроводных материалов — дуговой разряд постоянного тока. Часто в начальный момент горения дуги из графитового электрода улетучивается особенно большое количество вещества. Поэтому для обеспечения высокой чувствительности следует регистрировать начальный момент. Воспроизводимые условия возбуждения связаны с установлением равновесия испарения, о достижении которого можно судить по постоянству интенсивности наблюдаемых линий во времени. Установление такого равновесия (время обжига или обыскривания) следует определять в предварительном опыте. В количественном анализе спектр регистрируют сразу же после проведения этой предварительной операции. Как правило, время экспонирования фотопластинки не должно превышать 30 с в этом случае получаются достаточно хорошие результаты. Для проведения оптического спектрального анализа требуется очень небольшое количество вещества. Поэтому имеется возможность угокальиого анализа отдельных участков пробы. Используя особые условия проведения разряда и особые приемы подготовки, на металлах можно анализировать участки поверхности диаметром 0,5 мм и меньше [13, 14]. [c.194]

    Для анализа металлов и сплавов, минерального сырья практически Е1евозможно приготовление стандартов в лабораторных условиях. В этом случае используют образцы, состав которых был ранее установлен с помощью разных методов анализа, или стандартные образцы (СО). Строго говоря, стандартные образцы для спектрального анализа должны быть аттестованы как по химическому составу, так и по физически.м свойствам. [c.91]


Смотреть страницы где упоминается термин Металлы, спектральный анализ: [c.123]    [c.387]    [c.110]    [c.123]    [c.107]    [c.67]    [c.103]    [c.111]    [c.423]   
Физико-химические методы анализа Изд4 (1964) -- [ c.226 , c.252 , c.290 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.226 , c.252 , c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральный анализ



© 2024 chem21.info Реклама на сайте