Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

другими кислородсодержащими соединениями и третичных

    Неселективное разделение по температуре кипения Спирты и другие кислородсодержащие соединения Простые эфиры и другие кислородсодержащие соединения Первичные, вторичные и третичные спирты Кетоны и сложные эфиры Кетоны и альдегиды Кетоны и простые эфиры [c.282]

    Недостаточно исследована и несколько незаслуженно забыта реакция карбонилирования предельных и ароматических углеводородов, которая может значительно расширить сырьевую базу органического синтеза кислородсодержащих соединений. В последние годы получены данные о довольно высокой каталитической активности соединений металлов группы платины в этой реакции, что позволяет надеяться на разработку эффективных катализаторов прямого карбонилирования предельных и ароматических углеводородов. Возможен и другой путь вовлечения в реакцию этих углеводородов — через их галоидпроизводные. Серьезным препятствием развития этого способа синтеза, прежде всего ароматических и непредельных кислот, была низкая реакционная способность наиболее доступных хлоруглеводородов. Недавно Г. Хек с сотрудниками показал, что скорость реакции карбонилирования галоидуглеводородов, в том числе ароматических, резко возрастает, а синтез протекает в мягких условиях (атмосферное давление, 18—100° С) при добавлении в реакционную систему третичных аминов. [c.162]


    Большое значение имеет способность эфирных и гидроксильных атомов кислорода, являющихся акцепторами электронов, образовывать водородные связи с подходящими партнерами (разд. 1.1.1), например спиртами, кислотами, фенолами, первичными и вторичными аминами. Благодаря этому перечисленные соединения лучше удерживаются по сравнению с соединениями, не образующими водородных связей. С другой стороны, атомы водорода гидроксильных групп спиртов и углеводов, выступающих в роли неподвижных фаз, могут образовывать водородные связи с атомами-акцепторами таких анализируемых соединений, как простые и сложные эфиры, кетоны, альдегиды, третичные амины, азот- и кислородсодержащие гетероциклические соединения. [c.141]

    Значительно труднее гидрируются нитрилы и другие соединения с ненасыщенными связями между атомами углерода и азота. Гидрирование их необходимо проводить в присутствии скелетного никеля, а для уменьщения образования вторичных и третичных аминов реакцию вести в присутствии -аммиака. Амины можно получать также путем каталитического восстановления кислородсодержащих карбонильных соединений в присутствии аммиака или аминов, в результате чего образуются первичные, вторичные и третичные амины с произвольно выбранными радикалами  [c.98]

    Взаимодействие этпх фаз как с неполярными, так и с поляризуемыми или полярными анализируемыми веществами определяется исключительно или преимущественно дисперсионными силами. Таким образом, например, спирты выходят значительно раньше, чем при применении соответствующих полярных неподвижных фаз. Кроме того, межмолекулярные силы, вызывающие ассоциацию спиртов, не проявляются при малых концентрациях спиртов в неподвижной фазе, так что удельные объемы удерживания оказываются даже еще меньше, чем это соответствует температурам кипения. Для отделения первичных, вторичных и третичных спиртов алканового ряда от других органических соединений, прежде всего кислородсодержащих, углеводороды представляют собой особенно селективные неподвижные фазы. По исследованиям автора, это относится также к отделению перфторированных углеродных соединений от частично фторированных или нефторированных углеводородов. Для разделения углеводородов друг от друга рассматриваемые в этой группе неподвижные фазы обладают небольшой или вовсе не обладают селективностью таким образом, компоненты выходят, как правило, в порядке увеличения их температур кипения. [c.190]

    Неароматические углеводороды, будучи неполярными, являются очень хорошими растворителями для всех анализируемых веществ углеводородного типа. На этих неподвижных фазах алканы обладают максимальными (по сравнению с другими неподвижными фазами с сопоставимыми значениями вязкости) удельными удерживаемыми объемами, которые значительно больше, чем можно было бы ожидать из давления пара чистых веществ. Взаимодействие таких фаз как с неполярными, так и с поляризуемыми или полярными анализируемыми веществами определяется исключительно или преимущественно дисперсионными силами. Поэтому спирты, например, элюируются значительно быстрее из колонок с углеводородными фазами, чем из сопоставимых колонок с полярными фазами. Кроме того, межмолекулярные силы, вызывающие ассоциацию спиртов, не-действуют при малой концентрации спирта в неподвижной фазе, так что удельные удерживаемые объемы на практике даже меньше, чем это следовало бы из температур кипения. Углеводороды в качестве неподвижных фаз особенно пригодны для отделения первичных, вторичных и третичных спиртов от других органических соединений, и прежде всего от кислородсодержащих веществ. По данным автора, это относится также к отделению перфторированных углеводородов от нефтори-рованных или частично фторированных углеводородов. Разделение углеводородов на неподвижных фазах этой группы происходит, как правило, в соответствии с их температурами кипения. В этом смысле обсуждаемые фазы неселективны по отношению к углеводородным соединениям или обладают лишь небольшой селективностью. [c.125]


    Эта обменная реакция, характерная также для алкоголятов других поливалентных металлов, протекает быстро и не сопровождается побочными реакциями. Механизм ее полностью не выяснен, но есть указания, что в ходе реакции происходит разрыв связи металл— кислород [160]. Эта реакция часто применяется для получения органических кислородсодержащих соединений ниобия и тантала, причем группы — (0R) способны замещаться также на простые эфиры [161, 1621, -кетоэфиры [163, 164] -дикетоны [165, гли-коли [166, 167]. Например, кипячением пентаэтилатов ниобия и тантала с высшим нормальным спиртом в бензольном растворе из реакционной смеси можно отогнать этанол в виде азеотропной смеси с бензолом, а высший нормальный алкоголят оставить в растворе [156]. В подобных реакциях с высшими третичными спиртами соединения ниобия ведут себя иначе, чем соединения тантала. Если стойкие пента-трт-алкоголяты тантала можно получить либо обменной реакцией со спиртом, либо непосредственно из третичного спирта и аммиака, то соответствующие реакции с соединениями ниобия приводят к отщеплению спирта и образованию продуктов, содержащих связи Nb=0 [168]. Но пента-трет-бутилат может быть получен реакцией диалкиламидов ниобия с т/ ет-бутиловым спиртом [169] или обменной реакцией с ацетатом вместо спирта. Последняя реакция является общей для пентаэтилатов ниобия. При перегонке их с н-пронил-, изо-пропил-, н-бутил-, втор- бутил-, трет-бутил-ацетатом в эфирных растворах, а также с н-амил- и фенилацетатами в циклогексане протекает реакция [c.57]

    Третичные перекисные радикалы в реакциях с углеводородами в 2—3 раза менее активны, чем вторичные (табл. 82). По своей активности первичные и вторичные перекисные радикалы разной структуры практически не отличаются друг от друга [6]. Кумилпероксирадикал несколько менее активен, чем три-грег-бутилпероксирадикал (табл. 82). Различие в активности вторичных и третичных перекисных радикалов увеличивается, когда мы переходим к кислородсодержащим соединениям. Так, например, три-трег-бутилпероксирадикал атакует [c.309]

    Парафины содержат углеводороды, стернны, первичные, вторичные и третичные алифатические и, возможно, циклические спирты с сопряженными двойными связями, свободные и связанные в виде эфиров (табл. 9.45-9.47). Как видно из табл., Т смол и парафинов в два раза ниже Т сырого воска. Смолы и парафины содержат большее количество азот- и кислородсодержащих соединеьшй. Воск содержит более 20 % смол и 15 % парафинов , в то время как смола и парафины в свою очередь содержат значительное количество восковых и других соединений. Количество не-омыпяемых в воске веществ в 4 раза меньше, чем в смолистой части. [c.439]

    Для соединений железа, как показывает анализ данных, полученных рядом авторов [14, 33—35], активируюпщм хелатным узлом является сочетание третичного гетероатома азота и расположенной в а-положении к нему кислородсодержащей группы, а также две кислородсодержащие группы в а-положении друг к другу. Поэтому наиболее биологически активными являются соединения железа с производными 8-оксихинолина, пиколиновой кислоты и с а-кетокислотой (см. табл. 3). [c.161]

    В гл. 4 были подробно рассмотрены возможности синтеза окисей третичных фосфинов при помощи реакции Кагура — Гофмана и других реакций щелочного разложения четвертичных фосфониевых соединений (см. стр. 246 сл.). Упоминалось также о возможности получения окисей третичных фосфинов путем термического разложения солей четвертичного фосфония с кислородсодержащими анионами (см. стр. 246). [c.318]

    НОЙ группы В некоторой степени чувствительны к мягкости атакующего реагента. Так, отклонения, наблюдаемые для некоторых реакций от простой линейной зависимости между нуклеофильностью и основностью, часто можно объяснить мягкостью или поляризуемостью нуклеофила. На рис. И приведена в качестве функции основности нуклеофильная реакционная способность ряда соединений по отношению к г-нитрофенилацетату. Эта зависимость не столь четкая, как на рис. 6, поскольку сюда включены нуклеофильные реагенты, сильно различающиеся по структуре. На рисунке прямая линия с углом наклона 0,8 проведена через точки, соответствующие простым первичным аминам, которые вполне удовлетворительно соответствуют этой зависимости. Положительные отклонения от этой линии (наблюдаемые также и в случае аналогичных корреляций для других реакций с участием анионов тиолов, гидроперекисей и азидов, а также стерически незатрудненных третичных аминов) можно приписать, по крайней мере частично, мягкости или поляризуемости этих реагентов наоборот, отрицательные отклонения, наблюдаемые для кислородсодержащих анионов, таких, как фосфат, карбонат и ацетат, отчасти могут отражать относительную жесткость этих нуклеофилов. [c.80]


Смотреть страницы где упоминается термин другими кислородсодержащими соединениями и третичных: [c.241]    [c.102]    [c.190]    [c.878]   
Руководство по газовой хроматографии (1969) -- [ c.208 ]

Руководство по газовой хроматографии (1969) -- [ c.208 ]




ПОИСК







© 2025 chem21.info Реклама на сайте