Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть азотистые жирные кислоты в ней

    Неуглеводородная часть нефти состоит из сернистых, кислородных и азотистых соединений. Сера, количество которой колеблется от 0,1 до 7,0%, входит в состав меркаптанов, сульфидов, дисульфидов жирного ряда. По содержанию серы нефти делятся на малосернистые (например, кавказские нефти) и много-сериистые (нефти Башкирии, Татарии). Кислородные соединения нефти составляют нафтеновые кислоты, смолы и асфальтовые вещества. Смолы и асфальты — продукты с высокой молекулярной массой придают нефти темную окраску, они химически неустойчивы и легко при нагревании разлагаются и коксуются. Азотистые соединения нефти представлены производными пиридина, хинолина и аминами. Б нефтях содержится до 1,5 и 2,2% кислорода и азота соответственно. [c.32]


    Неуглеводородная часть нефти состоит из сернистых, кислородных и азотистых органических соединений. Сера входит в состав меркаптанов, сульфидов, дисульфидов жирного ряда. По содержанию серы нефти делятся на малосернистые (например, кавказские нефти) и многосернистые (нефти Башкирии, Татарии). Кислородные соединения нефти составляют нафтеновые кислоты, смолы и асфальтовые вещества. Смолы и асфальты — продукты с высоким молекулярным весом придают нефти темную окраску, [c.471]

    Кислый гудрон, образующийся при очистке масел и других продуктов прямой гонки нефти, содержит, кроме непрореагировавшей серной кислоты, сернистого газа и сульфата железа, значительные количества органических соединений. В состав органической части гудрона принципиально могут входить компоненты нейтрального, основного и кислого характера углеводороды, нейтральные смолы, асфальтены, карбены и карбоиды, асфальто-оксониевые соединения, нейтральные сернистые соединения, азотистые основания, нафтеновые (и жирные) кислоты, асфальтогеновые кислоты, кислые эфиры серной кислоты, сульфоновые кислоты [245]. [c.260]

    Итак, образование нефти в природе можно представить как результат гидрогенизации первичной нефти, образовавшейся из смешанного гумусо-сапропелитового материала путем постепенного изменения ого в придонных областях соленоводного бассейна в условиях анаэробного разложения. В зависимости от ближайшего химического состава сапропелитового материала и большего или меньшего содержания в нем гумусовых Веществ состав первичной нефти может колебаться в довольно широких пределах, соответственно чему продуктом ее гидрогенизации могут оказаться нефти различных типов. Так, например, если в первичной нефти преобладали жирные кислоты предельного ряда и продукты их превращения, то конечным продуктом гидрогенизации окажется нефть метанового типа если при образовании первичной нефти первенствующее место занимали непредельные кислоты жирного ряда и продукты их уплотнения циклического строения, то в конечной нефти будут преобладать нафтены наконец, в тех случаях, когда материнское вещество нефти содержало значительные количества гумусовых веществ, производных ароматического ряда, в составе конечной нефти видное место займет ароматика. В соответствии со всем вышеизложенным легко видеть также, что образование кислородных, азотистых и сернистых соединений, а равным образом такие свойства нефти, как ее оптическая деятельность, объясняются без особых затруднений. [c.306]


    Органические остатки подвергаются разлагающему действию анаэробных бактерий. В первую очередь разрушаются белковые вещества с образованием сероводорода и аммиака и других продуктов глубокого распада белковой частицы и распада каких-то устойчивых азотистых соединений. Получается, по словам акад. В. Л. Омеляпского, как бы выгнпвший , или, как его неудачно называет Г. Потонье, минерализованный сапропель, который не изменяется очень долго даже при свободном доступе воздуха. Во вторую очередь подвергается распадению клетчатка, или целлюлоза, и лигнин и другие органические соединения с высоким содержанием кислорода. Роль анаэробных бактерий состоит в извлечении кислорода и в образовании устойчивых соединений. Первая стадия бактериального разложения заканчивается образованием жиров и других устойчивых соединений. Этим вообще заканчивается стадия биохимических процессов, и органическое вещество обращается в тот кероген, о котором мы уже говорили. По мнению других исследователей, роль анаэробных бактерий на этом не заканчивается. Мэррэй Ст-юарт и другие английские геологи считают, что бактериальное разложение совершается до конца, до превращения органического вещества в нефть. Жиры, разложенные в жирные кислоты, а эти [c.338]

    У многих соединений нефти имеются специфические черты липидов это длинные цепи СНг-групп (жирные кислоты и их природные дериваты), изопреноидные цепи и циклы (терпе-ноиды, каратеноиды и стероиды). Некоторые азотистые соединения нефти также имеют аналоги в живой природе [Гусева А. Н., Лейфман И. Е., 1978]. [c.242]

    В очистке промышленных сточных вод принимает участие большинство микроорганизмов, способных к гетеротрофному биосинтезу, ибо только они могут разрушать органические вещества. Известно, что гетеротрофы в процессе эволюции приспособились к использованию в природе тех естественных органических веществ, с которыми они встречаются в нормальных экологических условиях. Это вещества растительного и животного происхождения разной сложности углеводы от гексоз и пентоз до целлюлозы, пентозанов, лигнина и хитина азотистые вещества от аминокислот до полипептидов и прочных фибриллярных белков — кератина и коллагена, нуклеиновые кислоты и нуклеопротеиды липиды и их компоненты от глицерина и жирных кислот до сложных растительных и животных масел, жиров и жироподобных веществ — фосфолипидов, липопротеи-дов и т. д. У значительно меньшего числа микроорганизмов существует приспособленность к потреблению углеводородов нефти, озокерита, битуминозных сланцев, сапропелитов и фенолов. Они в течение длительного периода времени, охватывающего жизнь многочисленных поколений микробов, в нормальных экологических условиях вступали в контакт с этими веществами, совершенно непригодными для всего органического мира ни в [c.100]

    Ароматические или бензольные УВ — циклического строения, называемые аренами. 4) Кислородные, сернистые и азотистые соединения, называемые гетероэлементами. К ним относятся нафтеновые и жирные кислоты, фенолы, эфиры, тиофан, пиридин. Указанные высокомолекулярные соединения входят в состав асфальтово-смолистой части нефти. Чем больше гетероэ- [c.77]

    При использовании информации об органических веществах в гидрогеохимических исследованиях можно выделить направления аналитических работ в связи с кругом решаемых задач. В проблеме генезиса и формирования подземных вод представляет интерес создание методов определения уже известных (высокомолекулярные жирные кислоты, спирты, алканы, изонреноиды) и поиски новых хемофоссилий , органических молекул биологического происхождения, сохраняющихся в геологическом времени мало изменившимися по сравнению с первоначальной структурой. При решении вопросов нефтяной гидрогеологии, связанных с миграцией и концентрацией углеводородов в залежи нефти, а также с нефтепоисками существенный интерес представляют совершенствование высокочувствительных методов определения различных -рупп углеводородов, в первую очередь наиболее растворимой группы моноядерных ароматических углеводородов. Наряду с углеводородами для поисковой гидрогеохимии необходимы надежные методы определения кислот различных рядов (нафтеновых, высокомолекулярных жирных кислот), наиболее растворимых азотистых соединений, характерных для нефтей. Особый интерес, видимо, представляют выявление и разработка методов анализа сернистых соединений в водах. Решение этих аналитических задач моЖет способствовать раскрытию механизмов их образования и связи с такими региональными процессами, как сульфатредук-ция и накопление в водах нефтяных месторождений высоких концентраций низкомолекулярных жирных кислот. [c.55]

    В связи с этим Петров сосредоточил внимание своей группы на изучении процесса окисления высококипящих фракций нефти. Окисляющим агентом в этом процессе является кислород воздуха, но реакция окисления идет только в присутствии катализатора и при повышенной температуре. При этом кроме нужных насыщенных кислот алифатического ряда с неразветвленной молекулой могут образоваться ненасыщенные кислоты, окси-кислоты и циклические соединения. Образование этих побочных продуктов значительно ухудшает экономические показатели процесса. Петров установил, что высококачественный продукт с наименьшим количеством примесей может быть получен лишь при окислении вы-сокоочищенного масла, освобожденного от ароматических и непредельных углеводородов, а также сернистых и азотистых соединений. Аналогичная глубокая очистка соляровых дистиллятов серной кислотой уже была разработана Петровым для синтеза сульфокислот контакт . Таким образом, в этой стадии новый процесс уподоблялся указанному синтезу, но в результате получался не один, а два готовых продукта — синтетические жирные кислоты и сульфокислоты контакт . [c.66]


    При 60° и 10 атм. давления смешанная культура термофильных цел-люлозоразрушающнх бактерий вместо уксусной кислоты образовывала смесь жирных кислот, в которых были обнаружены пропионовая, масляная и изомасляная кислоты. Вполне возможно, что увеличение давления повысит средний молекулярный вес кислот, но уже и полученный состав продуктов может объяснить состав легких фракций нефти. На основании проведенных работ можно сказать, что при температурах ниже 260° составные части растительных и животных остатков претерпевают следующие изменения 1) целлюлоза при действии бактерий дает кислоты, спирты и кетоны, превращающиеся в парафиновые углеводороды 2) жиры и воска под действием микроорганизмов омыляются и под влиянием глин образуют парафин и церезин 3) смолы, терпены и стерины дают под влиянием глин нафтены и ароматические углеводороды 4) протеины, повидимому, могут явиться основанием для азотистых соединений нефти и битумов 5) путь превращения лигнина не изучен. [c.400]

    В 1859 г. американский ученый Д. Ньюбери связал рождение нефти с обогащением органическим веществом битуминозных сланцев, подстилающих залежь нефти. Он обратил внимание, что нефть следует искать там, где пески контактируют с черными битуминозными сланцами. Впервые эта идея была высказана по данным бурения южных районов США и дала объяснение, почему многие скважины, которые были заложены в благоприятных условиях, не встречали нефти даже при наличии хороших природных резервуаров. Позже (1863 г.), американский ученый Винчел ввел понятие о нефтематеринских свитах, как месте рождения нефти. Значительным событием, оказавшим большое влияние на формирование основ концепции органического происхождения пефти, были лабораторные эксперименты химиков США и Германии К. Уоррена, Ф. Сторера, К. Готлиба и др. Особенно важные эксперименты провел К. Энглер (1888 — 1900 гг.), который показал возможность образования предельных и непредельных УВ при нагревании рыбьего жира под давлением. По мнению К. Энглера в ОВ осадка в результате разрушения азотистых соединений происходит относительное накопление жировых веществ животных. Под влиянием бактерий жир распадается на глицерин и жирные кислоты, из которых образуется нефть под действием давления и температуры. Несколько позже в качестве исходного материала он признавал и диатомовые водоросли, но полностью исключал из этого процесса остатки наземного растительного материала. Несколько позже Г. Потонье (1902 г.) систематизировал эти взгляды и создал "Сапропелитовую теорию". Он доказал, что для накопления жировых веществ в морских осадках нет нужды в катастрофах, в результате которых происходит концентрация животных организмов в осадке, поскольку микроводоросли, растущие в морях, также содержат большое количество жировых веществ. [c.13]

    Нефть представляет один из природных источников большого количества органических соединений. В нашей кавказской (Баку) нефти содержится до 90% циклических (нафтеновых) углеводородов и совсем мало ациклических, жирных. Уральская нефть содержит много ароматических углеводородов. Вообще всякая природная нефть имеет очень сложный состав. В нее входят в значительных количествах разнообразнейшие углеводороды парафины, олефины, циклопарафины, ароматические углеводороды в небол1>-ших количествах нафтеновые кислоты, азотистые основания, органические сернистые соединения и др. Поэтому выделение из нефти, нянример парафиновых углеводородов, представляет весьма трудную задачу. [c.37]


Смотреть страницы где упоминается термин Нефть азотистые жирные кислоты в ней: [c.31]    [c.112]    [c.47]    [c.184]    [c.367]    [c.148]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Жирные кислоты нефти

Кислота азотистая



© 2025 chem21.info Реклама на сайте