Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды потребление

    Нитрование ароматических углеводородов — введение нитрогруппы—имеет особое значение прежде всего при производстве нитросоединеиий, используемых для получения аминов. Последние и в первую очередь анилин применяли раньше преимущественно для изготовления красителей. Теперь же масштабы потребления нитросоединений и синтезируемых из них ароматических аминов в большей степени определяются потребностями производства химикатов для резины, особенно арилизоцианатов и арилдиизо-цианатов [35—37]. Нитросоединения ароматического ряда используются также и в качестве взрывчатых веществ. [c.29]


    Ароматические углеводороды, из которых наибольшее значение имеет бензол за последние годы наблюдается также рост потребления толуола и ксилолов в органическом синтезе. [c.351]

    Большие масштабы потребления бензола и нафталина наряду с наличием избыточных количеств толуола и метилнафталинов обусловили практическое значение процессов деалкилирования (деметилирование) ароматических углеводородов. В настоящее время этим путем получают значительное количество бензола и нафталина. [c.74]

    Высокая химическая активность ароматических углеводородов, их способность к донорно-акцепторным взаимодействиям с полярными соединениями объясняет их большую, чем у других классов углеводородов, физиологическую активность и высокую токсичность. При этом ароматические углеводороды лучше растворимы в воде, чем другие углеводороды, легче образуют аэрозоли, эмульсии и суспензии. Большие масштабы производства и потребления ароматических углеводородов, их широкое использование в различных областях народного хозяйства делает особенно важными профилактические меры по зашите от неблагоприятных воздействий ароматических углеводородов. - - [c.317]

    Необходимость улучшения качества и количества моторных топлив и ароматических углеводородов обусловлена постоянно возрастающим их потреблением народным хозяйством, а также требованиями по охране окружающей среды и экономии нефте-ресурсов. [c.4]

    При стабилизации катализатов получают сухой газ (На, СН СаН и фракцию Сз—С4, которая либо передается на ГФУ, либо отгружается непосредственно с установок риформинга как сжиженный газ для коммунально-бытового потребления. Из катализатов риформинга получают индивидуальные ароматические углеводороды (бензол, толуол, о- и п-ксилол, этилбензол, псевдо-кумол) и смешанные ароматические растворители — легкий соль- [c.125]

    ТАБЛИЦА 2.61. Изомерный состав смесей ароматических углеводородов Се (в зависимости от способа получения) и структура мирового потребления отдельных изомеров [c.267]

    ОСОБЕННОСТИ И ТЕНДЕНЦИИ В РАЗВИТИИ ПОТРЕБЛЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ [c.48]

    Углеводород Изомерный состав смесей ароматических углеводородов С,. % Структура мирового потребления, % [c.267]

    Стоимость бензола, полученного из нефти, выше, чем соответствующие стоимости толуола и ксилолов. В сырых нефтях нафтенового основания количества Св-углеводородов относятся к количеству С,- и g-углеводоро-дов, как 1 3 3, а поэтому при переработке единицы веса сырой нефти бензола получается меньше, его концентрация ниже и выделение обходится дороже. В то время как нефтяные толуол и ксилолы продают по той же цене, что и продукты, полученные из каменноугольной смолы, каменноугольный бензол обходится дешевле нефтяного . С другой стороны, в Англии и Западной Европе мощности по производству коксохимического бензола в 2,5 раза превышают его потребление химической промышленностью в 1955 г., а поэтому в этих странах отсутствуют стимулы к получению бензола из нефти. Толуола для производства химических продуктов сейчас вполне хватает, но с ксилолами положение совершенно другое. В каменноугольной смоле содержится мало ксилолов. Количества бензола, толуола и ксилолов в английской каменноугольной смоле, которая богата ароматическими углеводородами, относятся между собой как 1 0,23 0,5. Если бы отсутствовала возможность получать ксилол из нефти, развитие производства нового нефтехимического продукта — синтетического волокна терилен — могло бы тормозиться. [c.407]


    Химический состав сырья при заданных условиях процесса определяет также выход водорода при риформинге. Чем меньше парафинов в сырье, тем выход водорода выше, так как снижается его потребление на реакции гидрокрекинга. Для получения катализата с заданным содержанием ароматических углеводородов из фракций данного бензина нужны тем менее жесткие условия риформинга, чем выше интервал кипения фракции, так как с увеличением числа углеродных атомов в углеводородах данного строения растут и термодинамически возможный выход ароматических углеводородов, и скорость ароматизации. Содержащиеся в сырье ароматические углеводороды ограничивают термодинамически воз- [c.256]

    Общее давление и парциальное давление водорода. Для подавления дезактивации катализатора в результате образования на нем кокса нужно проводить риформинг при высоком парциальном давлении водорода. С его повышением снижается термодинамически возможный выход ароматических углеводородов и увеличивается скорость гидрокрекинга, в результате при прочих фиксированных параметрах с увеличением давления снижаются выход жидких продуктов процесса и содержание в них ароматических углеводородов. Одновременно уменьшается выход водорода, так как растет его потребление в реакциях гидрокрекинга. Данные о выходе продуктов риформинга (в %масс.) при получении бензина [c.258]

    Определяющей чертой современного потребления ароматических углеводородов является их преимущественное применение для изготовления сравнительно небольшого числа мономеров, используемых в производстве многотоннажных полимерных материалов, пластификаторов, синтетических волокон. В качестве сырья для их изготовления используется несколько углеводородов бензол, о- и п-ксилолы, толуол, нафталин. [c.48]

    IHa долю бензола приходится более 50% общего количества ароматических углеводородов, используемых химической промышленностью. Структура потребления бензола в основных капиталистических странах и регионах, по данным [6, 7], представлена в табл. 11. [c.51]

    Вопросам использования полициклических ароматических углеводородов посвяш,ено большое число статей и монографий. Во многих из них отмечается уникальность этого сырья, потенциальная возможность получения из него разнообразных ценных веществ [125]. Однако мировое производство большинства полициклических ароматических углеводородов, кроме антрацена, составляет всего сотни килограмм, тонны и десятки тонн в год, т. е. для нужд исследовательских работ и для некоторых малотоннажных производств. Ниже рассмотрены причины несоответствия между высокой оценкой потенциальных возможностей использования полициклических ароматических углеводородов и малыми масштабами их фактического потребления, а также тенденции, развитие которых может привести к массовому производству ценных продуктов. [c.100]

    Широкое вовлечение ароматических углеводородов в химическую переработку ужесточило требования к их чистоте, в частности к допустимому содержанию примесей, способных дезактивировать катализаторы соответствующих процессов или ухудшить качество получаемых конечных продуктов. Требования к качеству, как будет показано, определяются спецификой потребления и особенностями технологических процессов переработки сырья, а также во многом традициями соответствующих отраслей. Глу- [c.115]

    В книге- рассмотрены современное состояние и тенденцнн производства и потребления основных ароматических углеводородов. Описаны методы анализа и оценки их товарных свойств и обоснованы требования к качеству выпускаемых промышленностью продуктов. Дано описание технологических процессов производства бензола, ксилолов, полиметилбензо-лов, нафталина, антрацена, фенантрена и некоторых других многоядерных ароматических углеводородов, получаемых из каменноугольного и нефтяного сырья. Подробно изложена технология получения специальных сортов бензола и нафталина, используемых для процессов органического синтеза. Освещены научные основы и промышленные способы переработки важнейших ароматических углеводородов. Дана токсикологическая оценка названных соединений и рассмотрены меры по снижению их вредного воздействия на природу и человека. [c.2]

    Значительное влияние на структуру сырьевой базы получения бензольных углеводородов в ближайшее время должны оказывать отказ во многих странах от потребления этилированного бензина и резкое увеличение масштабов пиролиза с одновременным переходом к использованию более тяжелого -сырья. Поэтому извлечение ароматических углеводородов из продуктов каталитического риформинга будет расти значительно медленнее, чем из продуктов пиролиза. [c.146]

    Потребность в отдельных углеводородах ароматического ряда не соответствует их ресурсам в основных источниках сырья. Так, ожидаемая в Западной Европе структура потребления ароматических углеводородов может быть выражена соотношением бензол толуол ксилолы, равным 75 10 15 [145], а в США — примерно 60 10 30. [c.192]


    Сырье и продукция. Сырьем для получения п- и о-ксилола служат ксилольные фракции, выделенные методами экстракции плтт ректификации из продуктов 1слтал1ггического риформинга пиролиза бензинов, диспропорционирования и трансалкилиро-вания толуола. Характеристика изомерного состава смесей ароматических углеводородов С в различных технических продуктах и структура мирового потребления отдельных изомеров приведена в табл. 2.61. В табл. 2.62 дана характеристика качества изомеров, получаемых в промышленности. [c.267]

    В книге рассмотрено современное состояние и тенденция производства и потребления основных ароматических углеводородов. [c.336]

    Химическим составом сырья при заданных условиях процесса определяется также выход водорода чем меньше в сырье парафиновых углеводородов, тем выход водорода выше, так как снижается его потребление на реакции гидрокрекинга. Содержанием в сырье ароматических углеводородов ограничивается термодинамически возможная глубина ароматизации парафинов и нафтенов. Поэтому, если целью риформинга является получение индивидуальных ароматических углеводородов, то целесообразно предварительно, т. е. до риформинга, удалять их из сырья. На рис. 38 показана зависимость выхода водорода от содержания нафтеновых углеводородов в сырье. [c.115]

    Ведущими направлениями потребления нефтяного или газового углеводородного сырья в нефтехимической промышленности как в Советском Союзе, так и за рубежом являются 1) производство ацетилена, аммиака, метанола, синтез-газа и других, потребляющее, главным образом, природный газ 2) производство бутадиена, изопрена, бутиленов и других, использующее в основном углеводороды С4 и С5, содержащиеся в природных, попутных и нефтезаводских крекинговых и пиролизных газах 3) производство высших олефинов, диолефинов, спиртов, кислот и других, потребляющее парафины и парафиновые концентраты или дистилляты 4) производство бензола, толуола, ксилолов и других моноядерных ароматических углеводородов, использующее отдельные узкие фракции прямогонных бензинов и бензинов вторичного происхождения 5) производство этилена, пропилена и других ценных углеводородов, потребляющее различные виды газообразного и жидкого нефтяного сырья. [c.10]

    Прогнозируются достаточно высокие темпы дизелизации автомобильного транспорта при одновременном сокращении удельного расхода топлива. С учетом этого начиная с 2003 г. возможно сокращение потребления автомобильного бензина при интенсивном росте потребления дизельного топлива. Ожидается значительный рост потребности в сырье для нефтехимии — прямогонном бензине для пиролиза и ароматических углеводородах, сырье для производства технического углерода, а также в традиционных продуктах переработки нефти — коксе и битуме [37]. [c.27]

    В настоящее время в качестве жидкого сырья используются различные ароматические углеводороды (бензол, толуол, ксилолы и т. д.), получаемые из нефти и каменноугольной смолы, а также керосиновые и дизельные фракции нефтепереработки. В последние годы возросло потребление парафина, церезина и нафтеновых углеводородов. [c.103]

    Выбор того или иного подхода на западноевропейских НПЗ определяется, с одной стороны, состоянием и перспективами производства и потребления автомобильных бензинов и ароматических углеводородов, а с другой — технологической структурой НПЗ. [c.105]

    В настоящее время каталитический риформинг является одним из наиболее распространенных вторичных процессов нефтепереработки и установки каталитического риформинга почти обязательное звено нефтеперерабатывающих и нефтехимических производств. По данным [15] в промышленно развитых странах в 1984 году доля каталитического риформинга к прямой перегонке нефти на нефтеперерабатывающих заводах Японии составила 10,2 %, в Великобритании — 16,0 %, в ФРГ — 16,3 %, в Канаде — 18,3 %, в США — 22,5 %. Это обусловлено как постоянно возрастающим спросом на высокооктановые моторные топлива, так и увеличивающимся потреблением ароматики в качестве сырья в нефтехимической, фармацевтической, лакокрасочной и других отраслях промышленности. Бензол, толуол, ксилолы, другие индивидуальные ароматические углеводороды являются ценным сырьем для получения капролактама, полиуретанов, пластмасс, смол, моющих средств, красителей, лекарственных веществ, растворителей в производстве лаков, красок и других веществ. [c.3]

    Предубеждения, которые господствовали среди потребителей против горючего с повышенны удельным весом, были преодо-лены, и весьма скоро среди потребителей обозначилось движение в по льзу потребления бензгшов с примесью ароматических углеводородов. [c.363]

    Отмеченное выше противоречие возникло еще с довоенных лет и за последние годы не произошло принципиальных изменений в характере потребления и масштабах производства полициклических ароматических углеводородов, несмотря нЬ очень большой объем исследований, выполненных за этот период. Интерес к по-лициклическим ароматическим углеводородам определяется некоторыми особенностями их строения. Большинство их флюоресцирует при облучении, и кристаллические полициклические ароматические углеводороды используются как сцинтилляторы. Полициклические ароматические углеводороды и получаемые на их основе хиноны являются отличными хромоформными системами и служат сырьем для синтеза многочисленных красителей. [c.100]

    С ОСНОВНОГО капитала в этом случае соответственно выше. Далее из-за более высокого содержания серы и меньшего количества летучих в перерабатываемом сырье возрастает потребление катализаторов и химикатов. И, наконед, более высокий выход жидких ароматических углеводородов увеличивает затраты на их складирование и хранение. Следует отметить, что расчет затрат по переделу в этом случае не является достаточно четким нри переработке лнгроина выход ароматических побочных продуктов не превышает 10%, поэтому они могут быть легко использованы в качестве топлива, необходимого для осуществления процесса. При гидрогенизации керосина и газойля картина другая. В последнем случае выход побочных продуктов составляет (ТК ОЛО 25% по энтальпии сырья, а так как сбыт этих материалов в качеств е химикатов маловероятен, то следует предусмотреть все необходимое для их складирования. Например, при переработке газойля (см. табл. 41) вполне возможно предположить, что побочные иродукты могут складироваться как топливо, скажем, в непосредственной близости от энергооиловых установок, и что Цена на них может быть определ ена примерно [c.198]

    В производстве и использовании ароматических углеводородов можно выделить два этапа, характерные для всех промышленноразвитых стран. Длительное время основным источником получения ароматических углеводородов были побочные продукты коксования каменного угля сырой -бензол и каменноугольная смола. Этот период характеризовался разнообразным ассортиментом продуктов, получаемых из ароматических углеводородов (красители, фармацевтические препараты, взрывчатые вещества), но сравнительно небольшими масштабами их производства. Массовое развитие транспорта привело к широкому потреблению ароматических углеводородов в качестве высокооктановых компонентов бензинов. [c.145]

    Особенно высокое потребление водорода имеет место в реакциях гидрирования ароматических углеводородов. На один моль би- и трициклических ароматических углеводородов для их полного гидрирования (без гидрокрекинга) требуется соответственно 5 и 7 молей водорода, поэтому стоимость эксплуатационных затрат при переработке высокоароматизованного сырья очень высока. [c.269]

    Из ароматических углеводородов широко применяют в органическом синтезе нафталин в значительно меньших масштабах вырабатывают дурол, из которого изготовляют пиромеллитовый диангидрид. В основном нафталин производит коксохимическая промышленность, в последние годы в США были введены мощности по производству нафталина из нефтяного сырья путем гидродеалки-лирования различных ароматизированных фракций нефтепереработки. В США нафталин, вырабатываемый из нефтяного сырья, составляет примерно 40% от его общего потребления [12]. [c.8]

    Развитие рассматриваемых процессов в схемах переработки нефти вызывает необходимость потребления водорода для повышения соотношения Н С в получаемых продуктах по сравнению с исходным сырьем, удаления сернистых и азотистых соединений, насыщения олефинов, гидрирования ароматических углеводородов. Расход водорода в различных процессах гид-рогенизационной переработки нефтяных дистиллятов и остатков при переработке типичных сернистых нефтей с содержанием серы 1,5—1,7% (масс.) приведен ниже [в % (масс.) на сырье] [55, 59]  [c.55]

    Прежде ароматические углеводороды получали исключительно из каменноугольной смолы, которая образуется при сухой перегонке каменного угля на коксобензольных и газовых заводах. Долгое время химическая промышленность удовлетворяла свои потребности в ароматических углеводородах продукцией этих заводов. Но уже в первую мировую войну стал ош,ущаться недостаток в ароматических углеводородах, особенно в толуоле — исходном продукте для производства нитротолуола. Это узкое место еще отчетливее проявилось во вторую мировую войну, и поэтому все воюющие государства прилагали большие усилия для его преодоления. В настоящее время в производстве каменноугольной смолы наступил своего рода застой. Количество образующейся смолы зависит от производительности заводов, коксующих уголь, которая в свою очередь определяется потребностями металлургической и других отраслей промышленности. Однако мировое потребление кокса за последние годы не увеличилось в той стенени, в какой увеличилась потребность химической промышленности в составных частях смолы, особенно в бензоле, толуоле и нафталине. Толуол во вторую мировую войну вынуждены были в невероятно больших количествах готовить при номоищ гидроформинг-процесса. Недостаток в бензоле и нафталине, химическая переработка которых увеличивается с каждым годом (получение этилбензола, стирола, арилсульфонатов, фенола, фталевой кислоты и т. д.), ощуп ,ается все более остро. [c.98]

    Задача в основном решается для определения развития и размещения топливных продуктов. Для масел и нефтехимических продуктов, рассчитывается только объем необходимого сырья. Оптимальное перспективное планирование производства масел и нефтехимических продуктов —самостоятельные задачи, которые решаются независимо в силу их особенностей и целенаправленности процесса их производства. Это позволяет уменьшить размеры модели. При этом, определяя сырье для нефтехимии, учитывают отдельно ароматические углеводороды (переработка нефти — основной их поставщик) и нефтезаводокие газы (обладают малой тра1НСпорта бельностью и должны перерабатываться в районе потребления). Остальные виды сырья для нефтехимии включены в основные нефтепродукты рафинаты и низкооктановые бензины — в группу бензинов сырье для производства сажи — в группу дизельного топлива. [c.166]

    Расчеты показываюгг, что при получении ароматических по предлагаемой схеме потребление энергии на тонну перерабатываемого оырья снижается на 15 тыс.т условного топлива в год за счет отказа от эксплуатации малотоннажных установок риформинга ароматического профиля и снижения производитедьнооти установок выделения ароматических углеводородов. [c.90]

    Для исследования взяты остатки выше 500-52,0°С астраханского и карачаганакского конденсатов.Выход этих остатков 2 Ъ% и 5-18%,соответственно.Остатки характеризуются низкой плотностью (О,94-0,96г/см ),низким содержанием асфальтенов (1,5-2 ) и низкой вязкостью(5-18°ВУ при ЮО°С).Содержание смол 7-16%,ароматических углеводородов 47-64%.По этим показателям остатки также не могут служить сырьём для битумного производства.Однако высокое содержание парафино-нафтеновых углеводородов, высокая температура вспышки(322-332°С определяют ценность изученных остатков как компонента сырья битумного производства для получения специальных сортов битума, 1азовым сырьём могут" быть остатки высокосернистых высокосмолистых нефтей.. Следувдим направлением использования остатков перегонки газовых конденсатов является возможность их применения в качестве добавок к товарным битумам для получения новых марок смешением,Этот вариант полезен для обеспечения возможности увеличения ассортимента битумов в местах его потребления без окисления. [c.18]

    В начале 50-х годов, когда на многих нефтеперерабатывающих заводах было начато производство бензола, цена его составляла около 16 центЫг. -С ростом мощностей цена бензола снижалась, и в настоящее время рыночная цена его достигла паинизшего уровня — около 9 центЫг. Но даже нри столь низких ценах ироизводство бензола на нефтеперерабатывающих заводах внолне рентабельно. По объему потребления бензол значительно обгоняет любые другие ароматические углеводороды на бензол приходится около 70% общего сбыта низших ароматических углеводородов. Бензол является одним из важнейших видов нефтехимического сырья. Он используется в синтезе многих таких соединений, как стирол циклогексан, фенол, хлорбензолы, нитробензол. Области применения бензола подробно рассмотрены дальше. [c.247]

    Феноменальный рост производства и потребления МТБЭ объясняется его высокими октановыми характеристиками и способностью заменить вредоносные алкилсоединения свинца, ароматические углеводороды, олефины и серу в бензине. [c.47]


Смотреть страницы где упоминается термин Ароматические углеводороды потребление: [c.359]    [c.183]    [c.133]    [c.147]    [c.231]    [c.356]    [c.3]   
Производство сырья для нефтехимических синтезов (1983) -- [ c.188 ]




ПОИСК







© 2025 chem21.info Реклама на сайте