Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты ароматически плотность

    Окислением ароматических колец могут быть получены фенолы, хиноны и карбоновые кислоты, весьма важные для синтеза промежуточных продуктов, красителей и полимеров. Окисление ароматических колец, как правило, идет значительно труднее, чем окислительные реакции в боковых цепях. Из ароматических углеводородов бензол, в котором электронная плотность полностью выравнена, окисляется труднее всего. Нафталин, в котором эта выравненность нарушена, окисляется значительно легче. Еще легче по тем же причинам идут эти процессы с антраценом и фенантреном. Во всех случаях электронодонорные заместители в кольце облегчают течение реакций окисления. [c.323]


    Ароматические карбоновые кислоты так же, как и арены, способны к реакциям электрофильного замещения Н-атома на галогено-, сульфо- и нитрогруппы. Однако реакции идут медленнее из-за дезактивирующего действия -СООН на бензольное ядро. Как сильный ст-электронный акцептор -СООН, особенно в сильнокислой среде, проявляет -/-эффект и сильно понижает электронную плотность в орто- и иара-положениях бензольного ядра. Поэтому -СООН-группа является л<еша-ориентантом  [c.501]

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]

    В программе предусмотрен расчет плотности, теплоты парообразования, теплоемкости, теплопроводности, вязкости и поверхностного натяжения для следующих классов веществ 1) сложных эфиров, 2) ароматических соединений, 3) предельных карбоновых кислот, 4) альдегидов, 5) кетонов, [c.64]


    Обзор по реакции Кольбе см. в работе [62]. Состав продуктов реакции зависит от условий эксперимента. Для получения алкана в водном растворе необходим платиновый (или иридиевый) анод, высокие анодные плотности тока, кислая среда, низкая температура и высокая концентрация соли карбоновой кислоты. Если в качестве растворителя применять метанол с добавкой или без добавки воды, то в этом случае природа анода, изменения плотности тока, концентрации и температуры уже не столь важны. В результате побочных реакций образуются алкены, спирты и сложные эфиры. Наилучшие выходы, алканов получаются из карбоновых кислот с нормальной цепью, содержащих шесть или большее число атомов углерода. Из смесей двух карбоновых кислот получают один ожидаемый несимметричный и два симметричных алкана. а-Разветвлепные, а,р-иенасыщенные и ароматические карбоновые кислоты, реагируют с трудом или совсем не вступают в реакцию. Двухосновные карбоновые кислоты от малоновой до себациновой не дают алканов однако из их моноэфиров с успехом можно получать диэфиры. [c.80]

    Определение гидразидов карбоновых кислот [221]. Пробу, содержащую 30—60 мг гидразида карбоновой алифатической или ароматической кислоты, R ONHNH2 растворяют в 5 мл 0,5 н. хлористоводородной кислоты, добавляют 30 мл 0,5 н. раствора нитрата меди в 0,5 н. НС1. Образуется комплекс f u(R 0NHNH2)2-2H20] (N03)2, окрашивающий раствор в синий цвет. Через несколько минут после смешивания оптическую плотность жидкости измеряют при 582 нм. [c.285]

    Суммированы основные работы за 1965—1970 гг. по новым реакциям электрохимического синтеза органических соединений и новым идеям в области интенсификации процессов электросинтеза. Рассмотрены реакции анодного окисления углеводородов, спиртов, альдегидов, кетонов, карбоновых кислот и соединений других классов, реакции анодного замещения и присоединения — галоидирование, цианирование, нитрование, гидроксилирование, алкоксилирование, сульфирование, карбоксилирование, алкилирование и др. Приведены сведения об образовании элементоорганических соединений при анодных и катодных процессах. Рассмотрены катодные реакции восстановления без изменения углеродного скелета — восстановление непредельных ароматических, карбонильных, нитро- и других соединений с кратными связями, образование кратных связей при восстановлении, катодное удаление заместителей, а также реакции гидродимеризации и сочетания, замыкания, раскрытия, расширения и сушения циклов, в том числе гетероциклов. Рассмотрены пути повышения плотности тока, увеличения поверхности электродов, совмещение анодных и катодных процессов электросинтеза, применение катализаторов — переносчиков, пути снижения расхода электроэнергии и потерь веществ через диафрагмы. Описаны конструкции наиболее оригинальных новых электролизеров. Таблиц 2, Иллюстраций 10, Бйбл, 526 назв. [c.291]

    Влшшие природы трихлорметильного производного бензола. Из трихлорметильных производных бензола для получения хлорангидридов ароматических карбоновых кислот практическое применение находят бензотрихлорид, гексахлор-п- и гексахлор-л<-ксилолы. Из этих соединений наиболее легко в реакцию с органическими кислотами вступает бензотрихлорид (рис. 35), Пониженная реакционная способность гексахлор-п- и гексахлор-л<-ксилолов в этой реакции по сравнению с бензотрихлоридом является, по-видимому, следствием наличия в ароматическом ядре этих соединений двух электроноакцепторных заместителей-трихлорметильных групп, приводящих к уменьщению электронной плотности у реакционного центра , что в свою очередь затрудняет ионизацию молекулы трихлорметильных производных бензола. [c.95]


Смотреть страницы где упоминается термин Карбоновые кислоты ароматически плотность: [c.329]    [c.220]    [c.239]    [c.465]    [c.28]   
Руководство по малому практикуму по органической химии (1964) -- [ c.360 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Карбоновые кислоты ароматические



© 2025 chem21.info Реклама на сайте