Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии деление

    Стабильное поддержание любого репликона требует не только согласования его репликации с клеточным делением, но и упорядоченного распределения молекул ДНК по дочерним клеткам. Считается, что правильная сегрегация достигается у бактерий за счет прикрепления ДНК к мембране, причем пространственная организация [c.68]

    Размножение бактерий делением клетки проходит чрезвычайно быстро. При благоприятных условиях, к которым относятся наличие питательных веществ, температура и реакция среды, количество бактерий удваивается приблизительно через каждые 30 мин. [c.124]


    Характерна чрезвычайная быстрота размножения бактерий. Деление бактериальной клетки происходит каждые 20—30 мин, поэтому потомство одной клетки через 12 час может достигнуть нескольких миллионов. Скорость размножения бактерий значительно меняется в зависимости от условий существования. При развитии бактерий на каком-нибудь питательном субстрате их рост подчиняется определенной закономерности. [c.117]

    Размножаются бактерии делением клетки. Посредине клетки появляются перегородки, которые делят клетки, и из одной клетки получается две. У некоторых видов бактерий в клетке появляется круглое плотное образование, покрытое толстой оболочкой, которое называется спорой. Споры бактерий очень долго могут оставаться в покоящемся состоянии, не прорастая. Попадая в благоприятные условия, они прорастают и образуют нормальную бактериальную клетку. [c.85]

    ДНК, причем до тех пор, пока процесс репликации не завершится, мезосомы могут удерживать ДНК в определенном положении (рис. 2.5 и 2.6, В). Мезосомы могут прикрепляться и к новым перегородкам, образующимся между дочерними клетками, участвуя каким-то образом в синтезе материала клеточной стенки. У самых быстрорастущих бактерий деление происходит через каждые 20 мин. [c.27]

    Рост соперничающей популяции. Пусть п —число индивидуумов в популяции бактерий определенного вида. Каждая особь может умереть с вероятностью а и образовать новую особь за счет деления с вероятностью Р за единичное время а и Р полагают фиксированными и не зависящими от возраста особи, в противном случае процесс нельзя было бы считать марковским. Соперничество приводит к дополнительной смертности, и вероятность гибели особи (га—1) пропорциональна имеющемуся количеству других особей. В макро- [c.162]

    Законная Р. г. наблюдается, напр., между двумя копиями к.-л. хромосомы. У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) наиб, типичен обмен участками гомологичных хромосом в мейозе (деление клеток, в результате к-рого происходит уменьшение числа хромосом в дочерних клетках-осн. стадия образования половых клеток). Этот обмен может происходить между плотно конъюгированными хромосомами на ранних стадиях развития яйца или сперматозоида. Реже-законная Р. г. осуществляется при обычном делении клеток (с сохранением числа хромосом)-митозе. [c.229]

    По-видимому, бактерии неспособны различить эти два вещества и сульфамидный препарат завладевает в бактериях теми центрами, которые в нормальных условиях должны быть заняты витамином, способствующим росту бактериальных колоний. Это препятствует нормальному делению клеток и размножению бактерий и повышает шансы организма на преодоление инфекционного воздействия бактерий. [c.482]


    Биосинтез гликопептида стенки проходит через несколько этапов, включаюш их образование полисахаридных цепей, нараш ивание на них пептидных разветвлений и в заключение — сшивание этих пептидов пентагли-циновыми мостиками. Ряд антибиотиков блокирует определенные стадии этого процесса, что в итоге приводит к нарушению биосинтеза стенки и, следовательно, к появлению нежизнеспособных бактериальных клеток после деления. Так, бацитрацин и ванкомицин ингибируют биосинтез полисахаридных цепей гликопептида, а пенициллин угнетает заключительный этап — образование пентаглициновых сшивок. Гликопептид рассматриваемого типа — обитая основа клеточной стенки самых разнообразных бактерий в то же время подобные структуры отсутствуют в клетках животных организмов. Отсюда становятся понятными причины широты антибактериального спектра таких антибиотиков, с одной стороны, и их исключительно низкая токсичность для животных, с другой. [c.151]

    Реальное преимущество такого подхода — в возможности наблюдения динамических клеточных процессов, таких, как деление клетки. Этот результат не был достигнут, и доказательства, приведенные в работах [313—315], убедительно демонстрируют, что радиационные повреждения, имеющие место во время наблюдения даже наиболее быстро размножающихся бактерий, свели бы на нет ценность любых наблюдений с точки зрения биологии. [c.218]

    В промышленных процессах чаще используют покоящиеся клетки. Действительно, многие хозяйственно-ценные продукты синтезируются главным образом в стационарной фазе развития клеточных культур. Растущие клетки нарушают структуру носителя. Образующиеся при делении дочерние клетки, покидая носитель, загрязняют целевой продукт. Для подавления роста иммобилизованных клеток растений используют дефицит фитогормонов, а рост клетки бактерий тормозят добавлением антибиотиков. [c.93]

    Бактерии крайне разнообразны по химическому составу и характеру обмена веществ, поэтому разработать их рациональную классификацию очень трудно. Для высших организмов понятие виды можно определить как нескрещивающиеся формы. Б случае бактерий этот критерий лишен смысла, поэтому подразделение их на виды и роды нередко произвольно. Используемая в настоящее время схема (табл. 1-1) делит царство прокариот на 19 групп. В основу деления положены различные признаки, включая форму, отношение к красителям и химические свойства. В таблицу включены названия родов всех бактерий, упоминаемых в тексте книги. [c.23]

    Бактерии размножаются обычным путем бинарного деления. При этом единственная молекула ДНК бактериальной хромосомы удваивается, и в результате дочерние клетки получают по идентичной хромосоме. Однако у некоторых бактерий обнаруживаются зачатки полового размножения. Процессом, перемешивающим бактериальные гены, является при этом генетическая рекомбинация (гл. 15, разд. Ж). [c.39]

    Антибиотики — продукты жизнедеятельности бактерий и грибов, подавляющие рост или деление других микроорганизмов. Химически это весьма гетерогенный класс. [c.296]

    Содержимое всех живых клеток отделено от окружающей среды специальными структурами - биомембранами, которые обычно называют прото-плазматическими мембранами. У растений и бактерий наряду с такими мембранами снаружи клетки еще имеется клеточная стенка. Для эукариотических клеток характерно деление внутреннего содержимого клетки на отдельные отсеки, или компартменты. Они представляют собой субклеточные органеллы, ограниченные мембранами, например, ядро митохондрии, аппарат Гольджи. Однако мембраны служат не только поверхностями раздела. По существу, мембраны представляют собой сложные по строению и разнообразные по функциям биохимические системы. [c.106]

    Способность образовывать огромные площади внутри клетки например, в печени на 1 мг белка приходится 0,5 м2 мембран. Природа создала клетки и субклеточные органеллы такими маленькими, чтобы нормальная жизнедеятельность протекала на больших площадях мембран. Интенсивность процессов жизнедеятельности тем выше, чем больше соотношение поверхность/объем. Примером тому может служить деление бактерий в течение 15-30 мин, а вот амеба делится в течение дня. [c.108]

    Большинство бактерий бесцветны и прозрачны, увидеть их можно лишь после окраски анилиновыми красителями. Наружная оболочка у них пористая, тонкая она обеспечивает сохранение постоянной внешней формы. Под наружной оболочкой клетки находятся протоплазма и специфические ядерные вещества. Ядерное вещество особенно проявляется при размножении, которое происходит у бактерий делением клетки на две половинки. При благоприятных внешних условиях время генерации (деления) составляет у термофилов — 5 мин, у азобактера— 18 мин, у кишечной палочки — 20—30 мин, у туберкулезной палочки — несколько часов. [c.184]

    Для построения кинетических кривых необходимо тщательное соблюдение определенных условий опыта, что позволяет получить воспроизводимые. количественные данные. В обычной экспоненциально растущей культуре бактерий деление клеток не синхронизовано. Период подготовленности в этих условиях длится долго — 4—5 периодов деления. Ясно, что вероятность трансформации определяется некоторым усреднением состояния подготовленности для популяции клеток, находящихся во всевозможных фазах цикла развития. При этом наблюдается максимальная вероятность трансформации, не превосходящая 1—5% в лучншх случаях. Если цель работы — изучение удельной активности ДНК, выбирается относительно малое время контакта ДНК с клетками (5—10 мин.), после чего ДНК разрушается путем добавления фермента ДНК-азы. Концентрации ДНК берутся обычно в области линейной части характеристики, что необходимо проверять, проделывая измерения при ряде концентраций. [c.349]


    Биологическая роль нуклеиновых кислот начала выясняться в конце 40-х — начале 50-х годов, когда впервые было выяснено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация — каким-то образом закодированный приказ строить белковые молекулы определенного типа. Эти работы стали исходной точкой быстрого прогресса в области молекулярной генетики , приближающего нас к познанию процесса синтеза белка в клетках, размножения клеток путем деления и в конечном итоге воспроизведения всего сложного животного или растительного организма в том виде, который характерен для родителей этого организма. Подробное обсуждение этих проблем увело бы нас далеко в область биохимии, в общих же чертах роль ДНК и РНК выглядит следующим образом. Молекулы ДНК находятся в клеточных ядрах, они содержат наследственную информацию в виде различной последовательности нуклеотидов. ДНК играет роль матрицы , с которой отпечатываются копии молекул РНК, непосредственно участвующих в синтезе белков. Таким образом, молекулы РНК служат передатчиками от ДНК к местам клетки, где непосредственно осуществляется синтез белка. Роль РНК в процессе синтеза белка была подтверждена опытами, выполненными в начале 60-х годов М. Ниренбергом и Д. Матеи. [c.351]

    Подобное поведение характерно и для размножения бактерий. Деление каждой бактериальной клетки приведет к появлению двух клеток, двух — к четырем и т, д. Соответственно нарастание числа клеток во времени будет описываться экспоненциальным законом. Время между появлением новой клетки н ее делением на две иовых называется периодом генерации т. Рост числа бактерий в единице объема будет соответственно описываться выражением [c.160]

    Биолог. Да, Его называют еще единой энергетической валютой, так как он используется во всех живых организмах и растениях. Видимо, это дань ставшей очень модной сейчас экономике,,. Интересно, что по многим свойствам митохондрии очень похожи на бактерии их характерные размеры составляют несколько десятых микрометра, митохощфии имеют собственную ДНК и могут делиться самостоятельно, независимо от деления самой клетки, но "подстраиваясь" под ее потребности в энергии. Поэтому плотность митохондрий в клетках организма соответствует средней интенсивности процессов метаболизма [Христолюбова, 1977, Лузиков, 1980 Кемп, Арме, 1988], [c.36]

    Размножение бактерий происходит делением клетки пополам (рис. 79). Вначале в середине тела бактерии появляютс55 выросты, а затем они кольцеобразно вдвигаются внутрь клетки и делят ее пополам. Но встречаются бактерии (миксобактерии), размножение которых происходит путем перешнуровывания клетки без образования клеточной перегородки (рис. 80). Каждая половинка быстро вырастает до размеров материнской клетки и снова делится пополам и т. д. При благоприятных условиях размножение идет очень быстро. Считают, что бактерия делится пополам через каждые 20—30 мин. По подсчету ботаника Кона, при беспрепятственном размножении в течение 5 сут потомство одной бактерии средней величины (2 мк длины и 1 мк ширины) заняло бы объем, равный объему всех морей и океанов. Но размножение бактерий ограничено рядом факторов и таких фантастических размеров не достигает. [c.253]

    Обычно бактерии размножаются простым клеточным делением, т. е. количество ДНК в хромосоме удваивается, клетки делятся и дочерние клетки получают идентичные хромосомы. Однако, как показали в 1946 г. 1едерберг и Татум [13а], бактерии могут размножаться и половым путем. Прямых данных о спаривании у бактерий первоначально не было, однако было показано, что если смешать клетки двух различных мутант-лых штаммов К-12 Е.соИ и выращивать их совместно в течение нескольких поколений, то некоторые бактерии вновь обретут способность к росту на минимальной среде. Поскольку каждый из этих штаммов содержал по одному дефектному гену, образование особи, не несущей ни одного из этих дефектов, могло произойти лишь в результате комбинирования генетического материала обеих штаммов. Именно эти опыты по- служили основанием для вывода о существовании у бактерий конъюгации. В дальнейшем было показано, что в процессе конъюгации может происходить истинная генетическая рекомбинация. Это означает, что гены двух спаривающихся клеток могут быть интегрированы с образованием единой цепи бактериальной ДНК- [c.189]

    Миксобактерии близки к истинным бактериям, они имеют такие же малые размеры и палочковидную форму размножаются путем полеречного изоморфного деления являются хемосинтезирующими, гетеротрофами способны расти на искусственных средах. Большинство из них строгие аэробы, не образующие опор мезофнлы, растут гари нейтральной реакции среды pH 7,2. [c.281]

    Полиамины составляют ряд родственных соединений, частично образующихся из аргинина они присутствуют во всех клетках в относительно больших количествах (зачастую в миллимолярных концентрациях). Содержание полиаминов в клетках часто находится в стехио-метрическом соотношении с содержанием РНК. Однако у Т-четных бактериофагов н большинства бактерий содержание полиаминов ассо-ииировано с ДНК. Полиаминам приписывают множество функций. Они могут в известной мере замещать клеточный К" " и M.g + и, видимо, играют существенную регуляторную роль в процессах синтеза нуклеиновых кислот и белков [36]. Спермидин, по всей вероятности, играет специфическую роль в процессе клеточного деления [40а]. Полиамины могут взаимодействовать с двойной спиралью нуклеиновых кислот, образуя мостики между полинуклеотидными цепями в этом случае положительно заряженные аминогруппы взаимодействуют с отрицательно заряженными фосфатами остова нуклеиновых кислот [40]. В одной модели (предложенной Тсубои [40Ь]) тетраметиленовая часть молекулы полиамина укладывается в малой бороздке, связывая три пары оснований, а триметиленовые группы (одна в спермидине и две в спермине) образуют мостики между смежными фосфатными группами [c.99]

    Частичный перенос хромосомы из мужской клетки приводит к тому, что Р -клетка становится частично диплоидной (мерозигота), т. е. содержащей двойной набор многих генов. В такой частично диплоидной клетке между двумя хромосомами происходит обмен генетической информацией (генетическая рекомбинация) (рис. 15-2). Химические реакции, лежащие в основе этого процесса, имеющего важное значение для всех организмов, размножающихся половым путем, мы рассмотрим в разд. Ж- В конечном счете рекомбинационный процесс приводит к тому, что дочерние клетки, образовавшиеся при последующем делении, содержат только одну хромосому с обычным числом генов. Однако некоторые гены попадают в эту хромосому от каждого из родительских штаммов. Таким образом, может случиться, что клетка Р мутантного штамма, неспособная расти на среде без определенных питательных добавок, получит ген из мужской клетки, который позволит ей расти на минимальной среде. Хотя число таких рекомбинантных бактерий мало, тем не менее их легко можно отобрать из очень большого числа исходна смешанных мутантных бактерий. [c.191]

    Хромосомную карту Е.соИ можно получить, если смешать клетки Hfr и р- и дать возможность конъюгации происходить в течение опре-деленного интервала времени, а затем клетки интенсивно перемешать, например, в гомогенизаторе Уоринга. В результате этой процедуры все конъюгационные мостики разрушаются и процесс спаривания бактерий прерывается. Спаривание прерывают через разные промежутки времени и определяют наличие в бактериях-реципиентах генов, перенесенных иа Клеток донорного штамма. При помощи этого метода было показано,, что для полного переноса хромосомы при 37 °С требуется приблизительно 100 мин и что локализацию любого гена в хромосоме можно приблизительно установить по времени, необходимому для переноса этого гена в клетку-реципиент. В действительности, однако, все выглядит несколька сложнее. Поскольку полный перенос всей хромосомы осуществляется редко, в опытах обычно используются разные подштаммы Е. соИ К-12, У которых фактор F расположен в разных местах во всех случаях гены,, локализованные по часовой стрелке сразу же за точкой интеграции (рис. 15-1), переносятся быстро и с высокой частотой. [c.191]

    О получении первых экспериментальных данных, четко указывающих На полуконсервативный способ репликации, сообщили в 1958 г. Месел-сон и Сталь [24]. Клетки Е. oli выращивались на среде, единственным Источником азота в которой были ионы NHt. ДНК бактерий, появившихся через несколько последовательных делений исходных клеток в Данной среде, содержала только стабильный изотоп N. Такие бактерии быстро переносили в среду, содержащую NHt. Клетки оставляли в сре-Де на время, необходимое, чтобы их количество увеличилось вдвое, вчетверо и т. д. На разных стадиях выделяли ДНК и центрифугировали в Градиенте плотности хлористого цезия. Небольшие, но легко определяемые различия плотностей позволяли разделять двухцепочечные молекулы ДНК иа три фракции молекуды, содержащие только N молекулы, [c.195]

    Прежде чем обсуждать вопрос о дифференцировке сложных многоклеточных организмов, полезно рассмотреть более примитивные формы— одноклеточные и колониальные. В благоприятных условиях клетки бактерий и эукариот одинаковым образом вступают в фазу роста и деления (рис. 15-25), которая составляет основу экспоненциального роста [уравнение (6-60)]. Однако изменение внешних условий быстро меняет характер жизнедеятельности клеток. Так, недостаточность питательного субстрата не только уменьшает скорость роста, но и влияет на транскрипцию генов. У Е. oli это происходит в результате увели- [c.352]

    Ф-ции Т.к. в бактериальной клетке связаны с ионным обменом и регуляцией работы автолитич. ферментов (катализируют гидролиз сложного биополимера, составляющего каркас клеточной стенки), к-рые активны при росте и делении клеток. Мутантные клетки бактерий, лишенные Т.к., оказываются нежизнеспособными. К вторичньпи ф-циям Т. к. относят их антигенные св-ва и связывание фагов. Стрептококковые, стафилококковые и др. бактериальные инфекции человека и животных сопровождаются выходом Т.к. в органюм, что приводит к развитию постинфекц. осложнений в виде эндокардитов, нефритов, артритов и др. [c.510]

    Бактерии (от греч. eakterion - палочки) - простейшие в основном одноклеточные безъядерные организмы, размножающиеся делением. [c.228]

    Диапазон изменений нуклеотидного состава ДНК на удивление широк. Суммарное процентное содержание цитозина и гуанина (G -содержа-ние) в различных бактериях меняется от 22 до 74%. (G -содержание в ДНК Е. oli равно 51,7%). Для эукариот этот диапазон более узок (от 28 до 58%). Тот факт, что у бактериальных ДНК нуклеотидный состав меняется в гораздо более широких пределах, чем у высших организмов, удивления не вызывает. Прокариоты существуют на Земле почти столько же миллионов лет, сколько и мы. Но из-за их более простой структуры и высокой скорости деления природа совершила над их генетическим материалом значительно больше экспериментов и внесла в него значительно больше изменений, чем в наш. [c.138]

    Параллельно с не слишком плодотворными попытками построить обобщенную термодинамическую теорию, применимую к живым системам, проводились чисто эмпирические наблюдения над процессами роста живых систем и потребления ими энергии, выявившие ряд интересных фактов. Довольно хорошо изучены многие анаэробные процессы брожения, в ходе которых энергия химических реакций используется клетками для синтеза АТР (гл. 9). Как правило, стехиометрия этих реакций известна, и поэтому можно с хорошей точностью оценить количество АТР, синтезированного при сбраживании данного количества субстрата. Нетрудно измерить и количество образовавшейся в ходе брожения биомассы например, можно собрать культуру клеток быстро растущих бактерий, промыть, высушить и взвесить ее. Оказалось, что независимо от того, какой именно субстрат сбраживается (за редким исключением), величина Удтр — бес высушенных клеток в граммах на моль синтезированного АТР — остается почти постоянной [22, 31] и приблизительно равной 10,5. Другой факт состоит в том, что для бактерий, рост и деление которых (в аэробных условиях) сопровождается выделением только СОг и воды, 40 5% потребляемого углерода и водорода окисляется до СОа и воды, а 60 5% ассимилируется клетками. Отметим, что такой процент ассимилированного материала значительно выше, чем для анаэробного брожения, при котором подавляющая часть материала сбраживается, а не ассимилируется. Как мы увидим позднее, это различие обусловлено тем, что окисление дает значительно больший выход АТР, нежели брожение. [c.234]

    Как описать скорость роста клеток Рассмотрим культуру бактерий, находящуюся в логарифмической фазе роста. Каждая клетка культуры Делится спустя определенный промежуток времени (время генерации), который в отдельных случаях, например у Е. oli, составляет всего 20 мин >. Если данный объем культуры содержит в начальный момент времени No бактерий, то по прошествии п клеточных делений число бактерий составит [c.39]


Смотреть страницы где упоминается термин Бактерии деление: [c.441]    [c.441]    [c.225]    [c.245]    [c.275]    [c.275]    [c.125]    [c.579]    [c.9]    [c.44]    [c.259]    [c.353]    [c.349]    [c.41]    [c.381]    [c.125]   
Молекулярная генетика (1974) -- [ c.5 ]




ПОИСК





Смотрите так же термины и статьи:

Бактерии простое деление

Делении

Скорость размножения наименьших организмов бактерий. Величина т — скорость создания одного поколения делением



© 2025 chem21.info Реклама на сайте