Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выпарные аппараты температурные потери

    Для прямоточной выпарной установки температура, концентрация, расход раствора и пара на входе -го аппарата равны этим параметрам на выходе 1— 1)-го аппарата температура пара на входе в г-й аппарат равна температуре пара в (/— 1)-м аппарате за вычетом суммарной температурной депрессии. При длинных трубопроводах, соединяющих выпарные аппараты, вследствие потерь тепла в окружающую среду температура раствора на выходе (1—1)-го аппарата больше температуры раствора на входе в -й аппарат. Можно учесть эту разницу путем расчета потерь тепла от трубопровода в окружающую среду  [c.141]


    Анализ этого уравнения показывает, что величина Аг пер/2 представляет собой не что иное как дополнительную температурную потерю. В связи с этим общую полезную разность температур выпарных установок с аппаратами с вынесенной зоной кипения нужно определять по следующему выражению  [c.89]

    Кроме рассмотренных способов общую полезную разность температур можно распределить, исходя из температур вторичного пара в корпусах. Обычно этими температурами задаются, и по известным температурам пара Ti, греющего первый корпус, и вторичного пара Г онд. удаляющегося из последнего корпуса в конденсатор, находят, с учетом температурных потерь по корпусам, температуры кипения раствора в корпусах. Такой способ обычно используют при предварительном расчете многокорпусных аппаратов (см. ниже). Его применение возможно также в тех случаях, когда температурный режим работы выпарной установки при равенстве поверхностей нагрева корпусов оказывается технически неприемлемым. [c.362]

    Однако основной причиной, определяющей предел числа корпусов выпарной установки, является возрастание температурных потерь с увеличением числа корпусов. Для осуществления теплопередачи необходимо обеспечить в каждом корпусе некоторую полезную разность температур, т. е. разность температур между греющим паром и кипящим раствором, равную обычно не менее 5—7 С для аппаратов с естественной циркуляцией и не менее 3 С для аппаратов с принудительной циркуляцией. [c.362]

    Давление вторичного пара в паровом пространстве аппарата имеет существенное значение для повышения интенсивности работы выпарного аппарата, так как при увеличении давления повышается температура кипения раствора и, следовательно, уменьшается его вязкость. Чем выше давление в паровом пространстве выпарного аппарата, тем меньше температурные потери от гидростатического давления столба жидкости, так как гидростатическое давление составляет небольшую долю давления в паровом пространстве. [c.434]

    Потери общей разности температур в многокорпусной выпарной установке определяются суммой потерь по корпусам. Действительно (рис. 8.10), в однокорпусной выпарной установке полезная разность температур определяется как общая, за вычетом гидравлических потерь, потерь за счет температурной депрессии и потерь за счет гидростатического эффекта в одном аппарате. В трехкорпусной выпарной установке сумма потерь складывается из гидравлических потерь в трех аппаратах, потерь за счет депрессии в трех аппаратах и потерь за счет гидростатического эффекта в трех аппаратах. [c.180]


    Добавление каждого дополнительного корпуса требует увеличения материальных затрат, увеличивает суммарные тепловые потери и т. п., поэтому число корпусов МВУ ограничено экономическими соображениями. Кроме того, обычно МВУ располагает ограниченной общей разностью температур (Д общ = г. п 6. к)> значение которой определяется давлением имеющегося греющего пара (высший температурный потенциал ) и температурой конденсации вторичного пара последнего корпуса в барометрическом конденсаторе (I6. к)- Эта разность температур не зависит от числа корпусов и должна быть распределена на все корпуса. С увеличением числа корпусов на долю каждого из них придется меньшая полезная разность температур, что увеличивает необходимую теплопередающую поверхность каждого ВА. Помимо этого каждый выпарной аппарат имеет свою суммарную потерю разности температур (см. уравнение (4.8)), вычитаемую совместно с аналогичными потерями всех корпусов из фиксированного значения общей разности температур и уменьшающую полезную разность, достающуюся каждому корпусу. [c.330]

    Температурные потери и температура кипения растворов. В выпарном аппарате возникают температурные потери, снижающие разность температур между греющим паром и выпариваемым раствором. Они складываются из температурной депрессии Д, гидростатической депрессии А" и гидравлической депрессии А".  [c.352]

    Покажем это на примере выпаривания раствора в установке с естественной циркуляцией при температуре первичного пара Тх = 160 °С и температуре конденсации удаляющегося из установки вторичного пара Г онд 60 °С. Примем сумму температурных потерь для одного аппарата (корпуса) Д = 25 °С и будем для упрощения считать, что величины Д одинаковы для всех корпусов многокорпусной выпарной установки. [c.363]

    Кроме того, чем выше давление в паровом пространстве выпарного аппарата, тем меньше температурные потери за счет гидростатического давлеиия столба жидкости, так как при повышенных давлениях величина давления столба жидкости относительно общего давления мала. [c.376]

    Горизонтальные выпарные аппараты. Как отмечалось выше, су-, щественным фактором при выпаривании является высота слоя жидкости в аппарате, так как чем выше слой жидкости, тем значительнее температурные потери за счет гидростатического эффекта. Аппараты с рубашками и змеевиками страдают именно тем недостатком, что [c.381]

    Теплопередача в выпарных аппаратах происходит при изменении агрегатного состояния обоих теплоносителей. Поскольку теплопередача, как и все естественные процессы, всегда идет от высшего уровня к низшему, то температура конденсации пара должна быть выше температуры кипения раствора. Это означает, что давление пара в греющем пространстве каждого корпуса должно быть выше, чем в паровом. Разность температур в каждом корпусе выпарной установки бывает невелика. Она тем меньше, чем меньше полезная разность температур, т. е. разность между температурами пара, греющего первый корпус, и пара, поступающего в конденсатор, за вычетом всех температурных потерь и чем больше число корпусов. Поэтому поверхности выпарных аппаратов бывают значительными. Протекание теплоносителей в теплообменниках происходит под действием напора, создаваемого извне. В выпарных аппаратах в большинстве случаев скорость течения теплоносителей по трубкам определяется естественной циркуляцией, зависящей от разности удельных весов закипающего раствора, пронизанного пузырьками пара, и раствора, не содержащего паровых пузырьков, и многих других причин. Вторичный пар должен содержать как можно меньше капель и брызг раствора, иначе эти капли, удаляясь вместе с конденсатом, повлекут потерю продукта. [c.443]

    Горизонтальные выпарные аппараты. При рассмотрении методики расчета выпарных аппаратов мы видели, что существенным фактором при выпаривании является высота слоя жидкости в аппарате, так как чем выше слой жидкости, тем значительнее температурные потери за счет гидростатического эффекта. Аппараты с рубашками и змеевиками как раз и страдают тем недостатком, что в них высота жидкости, а стало быть, и гидростатический эффект весьма значительны. [c.339]

    Так как большая часть трубок наполнена паром, то гидростатическое давление на дно почти отсутствует и температурные потери здесь весьма ничтожны, а наличие большой скорости движения пленки жидкости, достигающей 20 т/сек, способствует хорошей теплопередаче. Оба эти факта выгодно отличают аппараты Кестнера от всех выше рассмотренных конструкций выпарных аппаратов, что и послужило основанием к их широкому распространению. [c.346]

    Статическая модель выпарного аппарата строится при следующих допущениях не учитываются масса и тепло неконденсирую-щихся газов, поступающих с греющим паром в выпарной аппарат твердая фаза равномерно распределена в жидкой среде потоков не происходит унос твердой и жидкой фаз соковым паром градиент температурного поля выпарного аппарата равен нулю вследствие интенсивного перемешивания щелочи не учитываются потери тепла в окружающую среду. С учетом изложенных допущений статическая модель выпарного аппарата, построенная на основе материального и энергетического балансов, будет состоять из следующих соотношений. При введении в алгоритм параметров потока щелочи (см. стр. 178) можно рассчитать расход его компонентов  [c.182]


    Таким образом, переход от одиночного выпарного аппарата к многокорпусной батарее позволяет уменьшить расход греющего пара. Однако с увеличением числа корпусов возрастает стоимость аппаратуры и эксплуатационные расходы (на создание вакуума, ремонт и т. д.). Поэтому при проектировании многокорпусной выпарки оптимальное число корпусов для каждых конкретных условий определяется на основании технико-экономических расчетов, т. е. путем сопоставления экономии расходов греющего пара и экономии амортизационных и эксплуатационных расходов. Следует также помнить, что в реальных условиях общая разность температур между греющим паром, поступающим в первый корпус, и соковым паром, уходящим из последнего корпуса, должна быть уменьшена на величину вредных температурных потерь, которые складываются 1) из депрессионных потерь, обусловленных понижением давления пара над раствором по сравнению с чистым растворителем при 253 [c.253]

    Увеличение поверхности теплообмена при использовании многокорпусных выпарных установок вызвано возрастанием потерь полезной разности температур из-за повышения суммы температурной и гидростатической депрессий, потерь в трубопроводах между корпусами наличие указанных потерь приводит к тому, что суммарная поверхность теплообмена многокорпусной выпарной установки всегда больше поверхности теплообмена однокорпусного выпарного аппарата, работающего при тех же параметрах. [c.75]

    Как изменится производительность выпарного аппарата, работающего под атмосферным давлением, при обогреве насыщенным водяным паром с избыточным давлением ризб = 0,12 МПа, если в аппарате создать вакуум 0,7 кгс/см а обогрев перевести на пар с избыточным давлением 0,6 кгс/см Гидростатический эффект для среднего слоя Арг. э = 9,81 -10 Па в обоих случаях считать температурную депрессию 4 К раствор поступает на выпарку подогретым до температуры кипения в аппарате. Коэффициент теплопередачи считать неизменным. Тепловыми потерями пренебречь. [c.152]

    Число корпусов выпарной установки. Переход от однокорпусной к двухкорпусной установке уменьшает удельный расход греющего пара приблизительно в два раза, но добавление пятого корпуса к четырехкорпусной ВУ уменьшает удельный расход греющего пара лишь на 10%. Каждый новый ВА требует дополнительных затрат, дополнительного помещения, увеличивает общее количество тепловых потерь и т. д., поэтому число корпусов МВУ ограничено экономическими соображениями. Кроме того, обычно МВУ располагает ограниченной общей разностью температур, значение которой определяется давлением имеющегося греющего пара (высший температурный потенциал) и температурой конденсации вторичного пара последнего корпуса в конденсаторе. Эта разность температур (Т — /кд) не зависит от числа аппаратов МВУ и должна распределяться по отдельным корпусам. С увеличением числа аппаратов на долю каждого из них придется меньшая разность температур. Помимо этого каждый выпарной аппарат имеет свою [c.272]

    Пленочные и роторно-пленочные выпарные аппараты. Прямоточные (пленочные) аппараты отличаются от аппаратов с естественной циркуляцией тем, что выпаривание в них происходит при однократном прохождении выпариваемого раствора по трубам нагревательной камеры (без циркуляции раствора). Раствор выпаривается, перемещаясь в виде тонкой пленки по внутренней поверхности труб. В центральной части труб вдоль их оси движется вторичный пар, что приводит к резкому снижению температурных потерь, обусловленных гидростатической депрессией. Различают прямоточные выпарные аппараты с поднимающейся и опускающейся пленкой [40]. [c.414]

    Температурные потери и температура кипения растворов. В выпарном аппарате возникают температурные потери, общая величина которых складывается из температурной депрессии А, гидростатической депрессии А и гидравлической депрессии А ". [c.371]

    Определение полной температурной депрессии в выпарной установке. В выпарной установке потеря температурного напора вызывается не только одной физико-химической температурной депрессией. В действительных условиях существуют потери температурного напора также за счет гидростатической и гидравлической температурных депрессий и полная температурная депрессия в выпарном аппарате  [c.122]

    Паропроводы. Следует обеспечить достаточное сечение паропровода от выпарного аппарата к конденсатору. Малый удельный вес пара под вакуум обусловливает высокие линейные скорости, которые здесь выше, чем это допускается в обычных паропроводах. Следует помнить, что при низких давлениях даже очень небольшая потеря напора на трение вызывает потерю значительной части общей температурной разности. [c.338]

    С верха колонны по трубе /V рафинат поступает в конденсационный горшок Л. Этот горшок препятствует дросселированию давления газа в колонне и одновременно обеспечивает свободный выпуск рафината, который вместе с некоторым дополнительным количеством рафината из отстойника попадает в выпарной аппарат для рафината /2. Другой метод работы состоит в том, что рафинат из отстойника снова подвергают в колонне экстрагированию. Выпарной аппарат для рафината работает при тех же условиях что и выпарной аппарат для экстракта. Двуокись серы, отогнанная в обоих выпарных аппаратах, компримируется компрессором 4 до давления 2—3 ат и затем конденсируется в холодильнике 5. Жидкая двуокись серы поступает снова в мерник 6, на чем ее круговорот заканчивается. Потери двуокиси серы, обусловленные неполнотой обезгаживания выходящих рафината и экстракта, покрываются поступлениями из запасного бака 13. По всей иоло нне для экстр агкровтмя температурный перепад (составлл ет от +10° ДО —10°. Этот перепад создается независимыми друг от друга витками трубок (иа схеме не показано), идущими вокруг колонны, по которым циркулируют различные количества охлаждающего рассола с температурой —20°. В отстойнике и в холодильнике точно так же поддерживается температура —20°. Получаемый таким образом сульфохлорид является примерно 95%-ным. Это значит, что он содержит еще 5% углеводорода. Выход при экстрагировани и составляет примерно 75% от введенного чистого сульфохлорида. Рафинат снова сульфохлорируется и поступает затем снова на экстрагирование. [c.407]

    Так как большая часть трубок наполнена паром, то гидростатическое давление на дно практически отсутствует и температурные потери от гидростатического эффекта ничтожны, а благодаря большой скорости движения пленки жидкости (20 м1сек) усиливается теплопередача. Эти особенности выгодно отличают аппараты пленочного типа от выпарных аппаратов, рассмотренных выше. [c.443]

    Проведение тепло- и массообменных процессов в тонком слое жидкости всегда связано с повышением их шггенсивности, малым временем пребывания жидкости в аппарате, низким сопротивлением по газовой фазе и хорошо развитой поверхностью контакта газа с жидкостью. Этими качествами во многом и определяется область применения пленочных аппаратов. Высокие значения коэффициентов теплоотдачи позволяют использовать пленочные аппараты в качестве выпарных аппаратов, работающих с низкими температурными напорами, т. е. применять их для создания батарей многокорпусной выпарки, или использовать дешевые теплоносители с низкими теплотехническими параметрами. Малое время пребывания жидкости в аппарате позволяет успешно применять их для концентрирования растворов термолабильных (быстро разлагающихся при повышенных температурах) веществ без потери качества продукта. Низкое сопротивление по газовой фазе позволяет с успехом применять пленочные аппараты для проведения массообменньгх процессов при низком давлении и высоком (более тысяч) объемном отношении расхода газовой фазы к жидкости. Пленочные аппараты применяются и для проведения химических превращений в системах газ— жидкость, когда реакция протекает быстро с выделением или поглощением большого количества теплоты. [c.535]

    После этого следует найти для каждого из корпусов все свойственные для аппаратов, используемых в качестве корпусов МВУ, температурные потери (депрессии) температурную, гидростатическую, депрессию перегрева, а также дополнительную свойственную МВУ гидродинамическую депрессию, обусловленную потерей давления пара на преодоление гидравлических сопротивлений грубопроводов при переходе из корпуса в корпус. Величина последней депрессии невелика и составляет, как правило, 1-2 С, поэтому обычно ее не вычисляют, а просто задаются ее величиной. При вычислении депрессий учитьшают предполагаемую к использованию методику расчета выпарных аппаратов — корпусов МВУ. Рядом величин задаются из опытных данных и конструктивных соображений. Например, если корпус предполагается рассчитывать по уравнению типа (11,2.1.2), то при оценке гидростатической депрессии по формуле (11.2.1.5) величины Н (высота тешюобменных груб) и е (паронаполнение) выбираются достаточно произвольно. В результате можно определить общий полезный температурный напор и полезные температурные напоры Агп( и температуры кипения 4, для каждого г-го корпуса. [c.201]

    В однокорпусный выпарной аппарат (рис. 5-6), работающий с тепловым насосом (сжатие вторичного пара в турбокомпрессоре), поступает разбавленный водный раствор с концентрацией 5% (масс.). Из аппарата выходит 550 кг/ч раствора с концентрацией 15% (масс.). Температурная депрессия 2,5 К. Гидростатическим эффектом и гидравлическими сопротивлениями пренебречь. Турбокомпрессор сжимает вторичный пар от 1 до 2 ат. Тепловые потери составляют 5% от (9нагр -h ( нсп). Начальная температура разбавленного раствора 70 °С. Определить а) сколько приходится добавлять греющего пара (пар сухой насыщенный), б) какую мощность потребляет турбокомпрессор, если общий к. н. д. его равен 0,72. [c.251]


Смотреть страницы где упоминается термин Выпарные аппараты температурные потери: [c.195]    [c.254]    [c.403]    [c.249]    [c.152]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.361 , c.365 , c.372 ]




ПОИСК







© 2024 chem21.info Реклама на сайте