Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура первичного пламени

    Пламя представляет собой одну из разновидностей низкотемпературной плазмы и всегда содержит некоторое количество свободных электронов и ионов, что подтверждается экспериментально по наличию у него электропроводности. На рис. 1.12 приведена схема строения пламени предварительно полученной смеси светильного газа с воздухом, а также приведены температуры отдельных его участков. Оно состоит из двух областей внутренней восстановительной и внешней окислительной. Во внутренней протекают первичные реакции термической диссоциации и сгорания компонентов смеси, происходящие при не- [c.35]


    Основными характеристиками пламени являются его температура и состав. Чаще всего применяют горючие смеси, предварительно смешанные с окислителем, например кислородом воздуха, горящие в ламинарном режиме. В этом случае фронт пламени поддерживается над срезом горелки быстрым потоком газа. Фронт пламени — это зона, в которой бурно протекают химические реакции. Ламинарное пламя имеет сложную структуру и состоит из нескольких зон. Во внутренней зоне происходят первичные реакции сгорания горючей смеси с образованием различных радикалов (молекул), например С , Сз, ОН, СН и др. Верхняя часть этой зоны имеет вид ярко светящегося конуса. В реагирующих газах нет термодинамического равновесия. Аналитическое значение имеет внешний конус пламени, где происходят реакции полного сгорания образующихся во внутреннем конусе радикалов в кислороде воздуха, диффундирующего из окружающей атмосферы. Этот конус слабо окрашен и практически не имеет собственного фона в видимой области спектра. [c.11]

    Согласно теории окисления через перекиси скорость химических реакций процесса горения углеводородных смесей обусловливается интенсивностью возникновения активных перекисей, с одной стороны, и быстротой их исчезновения—с другой. В период индукции в горючем происходит первичное накопление перекисей. Увеличение количества молекул перекиси сопровождается повышением числа экзотермических реакций окисления, что вызывает возрастание температуры и, следовательно, большую интенсивность возникновения новых молекул перекиси. При достаточной концентрации активных перекисей скорость реакции окисления настолько возрастает, что появляется пламя. Между моментом достижения достаточной для воспламенения концентрации перекисей и самим воспламенением протекает некоторый интервал времени, в результате чего горючая смесь в момент появления пламени оказывается пересыщенной перекисями, почему реакция принимает чрезвычайно бурный характер, т. е. возникает детонация. Очевидно, что то горючее будет наиболее склонно к детонации, у которого возрастание скорости образования перекисей прл повышении температуры будет происходить наиболее интенсивно, так как в этом случае будет увели-чиваться возможность пересыщения смеси перекисями в момент воспламенения. Влияние перекисей на возникновение детонации в двигателе было показано Каллендаром экспериментально. Он испытывал влияние на работу двигателя добавляемых к топливу стойких (перекись бензоила) и нестойких (перекись ацетила, перекись метилэтилкетона и др.) перекисей и отметил различие в их влиянии. [c.354]


    Импульсы воспламенения и борьба с ними. Импульсами воспламенения, приводящими к горению и взрыву веществ и материалов, могут быть открытое пламя несгоревшие частицы топлива раскаленные или нагретые поверхности с температурой выше температуры самовоспламенения веществ, которые могут иметь контакт с ними горючие смеси, температура которых повысилась при адиабатическом (т. е. без подвода и отвода тепла) сжатии вследствие химических и других процессов до температуры самовоспламенения жидкие и твердые вещества, подвергшиеся самонагреванию, которое привело к их самовозгоранию искры удара и трения искры, вызываемые электрическим током электрическая дуга (например, при электросварке) статическое электричество первичные и вторичные проявления атмосферного электричества и др. Механизм воспламенения горючего вещества (горючей смеси) во многом определяется его химической природой и агрегатным состоянием, характером поджигающего импульса и другими факторами. [c.201]

    Ламинарное пламя состоит из трех зон (рис. 3.36). Первичная реакционная зона обычно имеет ширину не более 1 мм. Температура в ней менее 1000 °С. В основном в этой зоне протекают реакции пиролиза горючего газа. Атомизация незначительна. Для анализа эту зону не используют. [c.145]

    Устройство и настройка паечного поста были описаны выше, здесь приводится информация о строении паечного пламени. При сгорании в струе кислорода пропан-бутано-вой смеси образуется пламя, состоящее из трех зон. Ядро — зона с температурой около 1000 С, здесь пропан-бутановая смесь, выходя из сопла горелки, нагревается и частично распадается, при этом раскаленные твердые частицы углерода ярко светятся, оболочка ядра — наиболее яркая часть пламени. Средняя — восстановительная зона — наиболее высокотемпературная часть пламени (до 2200 С), здесь происходит первая стадия сгорания пропан-бутановой смеси за счет первичного кислорода, поступающего из ба шона. В результате этого получается смесь, состоящая из окиси углерода и водорода, смесь активна по отношению к кислороду и способна восстанавливать металлы из окислов, отчего зона и называется восстановительной. Факел - третья зона пламени с температурой 2000-1500 °С, в факеле происходит вторая стадия горения пропан-бутановой смеси за счет поступления кислорода воздуха. Разлагающиеся двуокись углерода и вода выделяют кислород, который совместно с СО и парами воды окисляет паяемый металл. Для образования нормального пламени необходимо, чтобы соотношение кислорода и пропан-бутана составляло 3,4- 3,8. [c.96]

    Если пламя окружено воздухом, вокруг зоны внутреннего конуса возникает зона вторичного сгорания. На ее границе происходит окисление окиси углерода до двуокиси углерода, которое сопровождается сильным сине-фиолетовым излучением. Если первичное сгорание происходит неполностью вследствие недостаточного предварительного перемешивания газов температура этой внешней зоны может стать выше, чем во внутренней области пламени. Излучение из этой зоны приводит к возникновению фона, который необходимо принимать во внимание в практической работе. [c.85]

    Пожар легче ликвидируется на первоначальной стадии развития, когда температура, объем пламени и площадь очага относительно невелики, а пламя неустойчиво, и горение может быть прекращено простейшими (первичными) огнетушащими средствами. Поэтому каждый работник химического предприятия обязан немедленно начать ликвидацию очага пожара. [c.209]

    Самовоспламенение последней части заряда топливно-воздушной меси происходит в три стадии в соответствии с изменением ее температуры. 1-я стадия начинается с момента зажигания смеси искрой и заканчивается появлением в несгоревшей части смеси первичного холодного пламени. Образование холодного пламени в этой стадии связывается с взрывным распадом накопившихся в смеси перекисей. В результате распространения холодного пламени реагирует 5 —10% смеси и образуется большое количество высокоактивных соединений — перекисей, альдегидов и радикалов. Через некоторый промежуток времени после появления первичного холодного пламени в смеси возникает вторичное холодное пламя (2-я стадия). В результате распространения вторичного холодного пламени реагирует 50% несгоревшей смеси. Температура смеси повышается. В смеси возрастает концентрация СО и активных частиц, что приводит к появлению горячего пламени и мгновенному сгоранию СО и несгоревшего объема смеси, эквивалентному образованию детонационной волны (3-я стадия). [c.122]

    Сжигание газа в чугунных секционных котлах характеризуется тем, что пламя со всех сторон окружено стенками котла, имеющими температуру не более 100—120° С. Поэтому пламя, интенсивно отдавая тепло стенкам котла за счет излучения, охлаждается, скорость горения замедляется, а само пламя увеличивается. Этому способствует также указанная выше необходимость уменьшения подачи первичного воздуха в горелки. В результате указанных причин при сжигании природных газов пламя достигает высоты 500—600 мм и нередко касается стенок котла, вследствие чего резко увеличивается неполнота сгорания газа. [c.257]


    При устойчивом горении частично подготовленной смеси пламя (рис. 6.3) состоит из 2 конусов — наружного 1 и внутреннего 2. Последний представляет собой поверхность, в которой выгорает та часть горючего, которая обеспечена первичным воздухом, имеющимся в смеси. В зоне горения, т. е. на поверхности внутреннего конуса, развивается высокая температура, и она выделяется на фоне синеватого внешнего конуса своим зеленовато-голубоватым цветом. Основание внутреннего конуса располагается от об реза устья на расстоянии, примерно равном толщине зоны горения, которая образует поверхность конуса (для смеси метана с воздухом — около 0,6 мм). Остальная часть горючего догорает в наружном конусе (иногда называемом мантией) за счет воздуха, диффундирующего в него из окружающей атмосферы. [c.264]

    Газовый состав горючей смеси является основным фактором, определяющим свойства пламени, в том числе его структуру, температуру, стабильность горения и др. Так, пламя оксид азота (I)— ацетилен, получаемое стандартной горелкой, характеризуется наличием трех отчетливых зон первичной реакционной зоны высотой 2—3 мм светло-голубого цвета, зоны внутреннего конуса, имеющего красноватую окраску и высоту от О до 30 мм [c.113]

    Существенную часть дальнейшего процесса (вообще наименее изученного) составляет, повидимому, дальнейшее окисление основной массы непрореагировавшего углеводорода, индуцированное продуктами холодного пламени. Важную роль среди последних играют радикалы, образовавшиеся при распаде перекисей, и ацеталь-дегид, окисление которого также приводит к образованию перекисей и перекисных радикалов типа СНзСО(ОО)—. Есть основание полагать, что вторая стадия также завершается по истечении некоторого периода индукции Т2 взрывным распадом перекисей, аналогичным прежнему, но с тем различием, которое налагает на процесс вовлечение в окисление большей массы исходного горючего и значительно ббльшая максимальная концентрация накопленных перекисных продуктов. Возникающий при этом особый тип пламени — промежуточный между холодным и горячим пламенем. Реакция идет в нем, так же как в холодном пламени, не до конечных продуктов СОд и П2О, а до СО, на что указывает меньшее, против теоретического, повышение давления и температуры, а также значительно большее против теоретического увеличение числа молекул при сгорании. Но степень разогрева в этом пламени уже велика и соответствует выделению приблизительно половины полной энергии сгорания. Это, как мы его условно назовем, вторичное холодное пламя распространяется за счет частично передачи тепла, частично диффузии активных центров со скоростью, значительно превышающей скорость первичного холодного пламени , и оставляет за собой нагретую до высокой температуры смесь СО, неиспользованного кислорода и активных центров. При достаточно высокой концентрации последних происходит цепочечно-тепловой взрыв этой смеси, рождающий настоящее горячее пламя. [c.196]

    Пламя можно рассматривать как разновидность плазменного состояния вещества, так как оно всегда содержит некоторое количество свободных электронов и ионов, что подтверждается экспериментально, например, его электропроводностью. Во внутреннем конусе пламен при недостатке окислителя идут реакции первичного сгорания смеси. Их основными продуктами являются СО и Нг. Внутренний конус пламени окрашен в голубой цвет. Во внешнем конусе, излучение которого обычно используется при анализе (зона вторичного горения), СО и Нг сгорают. В промежуточной зоне реакции горения не протекают. При постоянном составе горючей смеси и стабильных условиях ее поступления в горелку пламя имеет четко выраженную структуру. Это объясняется тем, что скорость поступления горючей смеси уравнена скоростью фронта пламени. Получаемая в результате устойчивая плазма обусловливает высокую воспроизводимость пламеннофотометрических определений, обычно составляющих 2—4%, а иногда и 0,5—1,0%. Средние температуры некоторых наиболее широко применяемых пламен приведены ниже  [c.246]

    К сожалению, нет никаких экспериментальных сведений по-изменению геометрии заряда, подтверждающих предложенную схему поверхностных реакций, а имеющиеся данные говорят скорее в пользу многопламенной структуры, чем структуры с одиночным пламенем, постулированной в работе [72]. Поэтому была предложена статистическая модель [7], базирующаяся на нескольких типах пламен ) (рис. 33, в). В этой модели приняты следующие предположения 1) прогрев связующего и окислителя осуществляется за счет теплопроводности, 2) связующее и окислитель разлагаются эндотермически, 3) между продуктами разложения в конденсированной фазе протекают экзотермические реакции и 4) газообразные продукты улетучиваются и реагируют в газовой фазе. При низком давлении рассматриваются три вида пламени первичное пламя между продуктами разложения связующего и окислителя, пламя окислителя и конечное диффузионное пламя между продуктами двух других пламен. Эта модель предсказывает зависимость скорости горения от содержания окислителя в ТРТ и от начальной температуры топливного заряда, среднюю температуру поверхности и расстояние до фронта пламени. Модель несколько завышает влияние размера частиц по сравнению с наблюдаемым на опыте. Бекстед усовершенствовал модель, применив ее к двухосновному ТРТ [4], а в следующей работе [5] предположил, что горючее и окислитель имеют разную, а не одинаковую (среднюю) температуру поверхности. Он также перешел от осреднения по [c.70]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

    Горелки, применяемые в газовых холодильниках, как правило, управляются терморегуляторами. Обычно применяются горелки Бунзена небольшой мощности (837,4—3349,44 кДж/ч), в которых первичный воздух поступает на горение через пылесборную трубу. Тем самым предотвращается возможность образования пылевого пуха и защищаются от загрязнения и закупорки небольшие отверстия воздушных жалюзи. Отсечной клапан безопасности управляется с помощью биметаллической пластинки, конец которой помещен в основное пламя. С помощью этой пластинки регулируется расход газа и прекращается доступ его при погасании пламени. Клапан терморегулятора, снабженный обводной линией постоянного минимального расхода газа, управляется ртутным стеклянным термометром, расположенным внутри холодильника. Повторное включение горелки осуществляется нажатием кнопки отсечного клапана безопасности, размораживание — путем установки задания терморегулятору на более высокую температуру вручную или с помощью регулируемого часовым механизмом электрического теплообменника, подавляющего процесс рефрижерации. [c.207]

    Основываясь на изложенном, естественно предположить, что профиль кривых распределения температур в вертикально расположенном факеле должен быть симметричным относительно его оси (см. рис. 81). Это одинаково справедливо как для случая горения готовой горючей смеси, так и для случая горения газа в атмосфере воздуха. Уровень темлерагур в пламани, очевидно, будет зависеть от теплоты сгорания горючего газа, а также от физических параметров газа и воздуха и, конечно, от количества первичного воздуха в горючей смеси. При прочих равных условиях пламя предварительно подготовленной горючей смеси будет наименьших размеров и температура его будет наивысшей. По мере уменьшения содержания в смеси первичного воздуха объем и светимость пламени, а также его теплоотдача в окружаюш,ее пространство будут возрастать и, как следствие, будет снижаться температурный уровень факела. Профиль кривой распределения температур в поперечном сечении факела [c.164]

    Горелка керосиновой лампы более совершенна не только по количеству излучаемого света, но и тем, что в ней предусмотрена регулировка величины рабочей части фитиля, иа которой происходит испарение керосина. Необходимое для этого тепло доставляется отчасти излучением переднего, нижнего края пламени, который видит фитиль, а главным образом — горячим металлическим грибком, воспринимающим тепло непосредственно от пламени. Именно этот горячий грибок и создает зону теплового разложения топливных молекул, вступающих в смесеобразование с воздухом. Тут же, около верхней части грибка, где смесь достигает необходимой пропорции между топливом и воздухом и успевает при этом- прогреться до соответствующей, достаточно высокой температуры, возникает первичный фронт воспламенения (равновесие скоростей подачи смеси и воспламенения), т. е. осуществляется основная задача всякой горелки. Затем продолжается развитие процесса смесеобразования, совершенство и интенсивн01сть которого, в основном, зависят от свойств приданной горелке топочной камеры, в данном случае — размеров и очертания раздутой части лампового стекла. Без стекла пламя держится на горелке, но развитие процесса идет вяло, неорганизованно и не завершается полным сгоранием. Стоит надеть стекло и подрегулировать фитиль, чтобы картина резко изменилась пламя принимает совершенно определенные очертания, достигает необходимой яркости, и процесс горения завершается с необходимой полнотой. Все это свидетельствует о значительном усилении скорости смесеобразования, а следовательно, и сгорания и о развитии в связи со всем этим высокой температуры в очаге горения [c.135]

    Начиная с давления, при котором происходит загорание ЖВВ в сосуде данного диаметра (оно обусловлено тепловыми факторами) и вплоть до некоторого давления, которое различно у разных ЖВВ, наблюдается медленное равномерное горение. Так, согласно данным Андреева [38], нитрогликоль устойчиво горит при диаметре стеклянной трубки в 3—4 мм при давлениях более половины атмосферы, а при 1 атм скорость составляет около 2 см/мин. При этом фронт горения ровный, пламя, как правило, слабосве-тящееся, температура его относительно невелика. Реакции в пламени идут не до конца, осуществляются только наиболее активные стадии. Такое пламя называют первичным. [c.228]

    В работе [83] установлено, что в пламени газовой смеси 0+02- N2 при атмосферном давлении и температуре 2500 К первичная ионизация происходит не вследствие электронного удара, а путем химической ионизации. С помощью различных добавок в пламя СаЫа показано, что ионизация происходит следующим образом  [c.58]

    Из приведенных наблюдений следует, что перекиси индуцируют холодное пламя уг.леводорода только в определенных условиях, именно, когда состояние смеси пе сильно удалено от пределов холодного пламени, как это было в опыте Неймана и Тутакина. Введение перекиси всегда сокращает период индукции холодного пламени и снижает его предел, но наличие в смеси взрывной концентрации перекиси, соответствующей данной температуре, не есть достаточное условие для возникновения холодного пламени ири любых давлениях и даже при любом составе смеси, как это может быть понято из приведенной выше формулировки Неймана. Иначе говоря, критическое парциальное давление перекисей, достигаемое перед возникновением холодного пламени углеводорода, отнюдь нельзя отождествлять с критическим давлением взрывного распада чистой перекиси при той же температуре. Этот вывод следует из того, что критическая скорость цепного распада перекиси отнюдь не определяется однозначно ее ]iOпцeнтpaциeй. В частности, можно ожидать, что эта концентрация, прп которой происходит взрывной распад перекиси, будет те м меньше, чем выше температура, ускоряющая первичную реакцию распада (3), и тем выше, чем выше давление, стабилизирующее перекиси, поскольку бимолекулярные реакции синтеза перекиси ускоряются с ростом давления сильней, чем мономолекулярная реакция начала распада.  [c.40]

    Восстановительный или окислительный характер пламени зависит также от соотношения смешиваемых количеств газа я воздуха. Если имеет место избыток первичного воздуха (кислорода), то пламя имеет окислительный характер. Если же количество воздуха (кислорода) меньше нормального, то пламя приобретает восстановительный характер. В табл. 2-24 приведены данные о количестве воздуха, необходимом для сгорания различных газов. Окислительное пламя всегда имеет более высокую температуру, ч1ем восстановительное. [c.88]

    II. В топку подается через горелку хорошо подготовленная смесь газа с воздухом, содержащая только часть (30—70%) воздуха, необходимого для горения. Этот воздух называют первичным. Остальной (вторичный) воздух поступает к факелу за счет диффузии, и, следовательно, часть газа дожигается в диффузионном факеле по мере осуществления контакта его с вторичным воздухом. Так как газ частично уже смешан с воздухом, то горение его происходит значительно быстрее, чем при внешнем смешении, без выделения свободного углерода в виде сажи. Факел получается коротким, а пламя песветящимся с высокой температурой. При этом газ полностью сгорает при меньших избытках воздуха, чем в горелках внешнего смешения. [c.148]

    Реакц1юнйая камера представляет собой пару труб пз легированной стали, соединенных скользящей посадкой [46]. Верхняя труба укреплена неподвижно, а нижнюю (с помощью которой осуществляется первичная закалка водой) можно поднимать и опускать, регулируя тем самым критические параметры процесса время пребывания газа при температуре реакции и соотношении длины и диаметра реакционной зоны. Образующееся пламя имеет форму короны с осью, параллельной оси камеры. Время реакции при 1400° С вплоть до охлаждения до 500° С должно составлять 2,3—2,9 мсек. Стенки реактора предохраняются от отложений сажи и смо.чистых побочных продуктов реакции непрерывным равномерным потоком воды, подаваемой под высоким давлением, или тяжелым [c.387]


Смотреть страницы где упоминается термин Температура первичного пламени: [c.63]    [c.63]    [c.9]    [c.45]    [c.124]   
Ракетные двигатели на химическом топливе (1990) -- [ c.66 ]

Ракетные двигатели на химическом топливе (1990) -- [ c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Пламена температура



© 2025 chem21.info Реклама на сайте