Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден комплексы с молекулярным азотом

    Оба металла — железо и молибден, которые являются важными компонентами азотфиксирующих ферментов,— образуют устойчивые комплексы с молекулярным азотом. Этот факт уже сам по себе наталкивает на мысль, что оба металла принимают участие в процессе фиксации азота, по крайней мере на стадии его связывания с ферментом. К сожалению, комплексы, образуемые молибденом (табл. 27), по-видимому, не имеют прямого отношения к биологическим системам, поскольку в них участвует только молибден в состоянии окисления - -1 или О, притом с небиологическими лигандами, главным образом с третичными фосфинами. Такой состав комплекса, вероятно, необходим, чтобы одновременно выполнялся ряд требований, необходимых для связывания молекулярного азота наличие низколежащих тг-акцепторных орбиталей и занятых 0-донорных орбиталей. Хотя комплексы молибдена с молекулярным азотом не исследовались методом рентгеноструктурного анализа, следует ожидать, что молекула азота образует с атомом металла несимметричную структуру, присоединяясь к нему одним из своих атомов, как показано на рис. 50 [148]. Поляризация координированной таким способом молекулы азота приводит к тому, что валентное колебание попадает в инфракрасную область спектра. Значение (Ы—М) молибденовых комплексов (табл. 26) находится в интервале 1925—2220 см характерном и для комплексов N2 с Ре, Со, N1, Ки, [c.321]


    Недавно было сделано открытие, что определенные комплексные соединения способны присоединять молекулярный азот и что этот азот затем в подходящих условиях может быть восстановлен в аммиак при атмосферном давлении. Исходным пунктом исследований послужил факт связывания азота воздуха клубеньковыми бактериями, живущими на корнях бобовых растений. Оказалось, что обеспечивает этот процесс комплекс фермента, содержащий молибден и железо,-так называемая нитро-геназа. В поисках катализатора, который оказывал бы такое же [c.289]

    Среди ферментов, содержащих ионы переходных металлов, важное место принадлежит нитрогеназе. Ряд видов бактерий (в частности, находящихся в симбиозе с бобовыми растениями) и водорослей обладает способностью восстанавливать азот воздуха до аммиака. В конечном счете именно этим способом в организмы доставляется азот, необходимый как для белков, так и для нуклеиновых кислот. Такая реакция, как N2 + ЗПг-> 2NПз, в газе требует гетерогенного катализатора, давления порядка 250 атм и температуры до 450°С (процесс Габера—Боша). В бактериях эта реакция идет с участием нитрогеназы — комплекса двух белков, один из которых содержит молибден и железо, а другой — только железо. Роль Мо является определяющей. Несмотря на то, что структура нитрогеназы пока еще мало изучена, с помощью качественных методов квантовой химии, основанных на теории поля лигандов, удалось выявить роль молибдена. Активация молекулярного азота N2 происходит, по- видимому, в комплексе Ме — N = N — Ме (Ме — металл). При этом связь NN в N2 из тройной превращается практически в единичную. Рентгеноструктурный анализ показал, что в модельных комплексах N2 с металлами длина связи NN равна 0,137 нм (длина связи N=N 0,110 нм, N=N 0,123 нм, N—N 0,144 нм). [c.218]

    В качестве промышленного сырья было бы весьма заманчиво использовать некоторые широко распространенные вещества, включая азот, моноксид и диоксид углерода и метан. Однако это относительно инертные соединения, и чтобы они могли участвовать в реакции, необходимы катализаторы. В этой ситуации представляется перспективным применение растворимых металлоорганических соединений. Например, при помощи растворимых соединений молекулярного азота (N2) с оловом и молибденом удается осуществить синтез аммиака в мягких условиях. Связи углерод — водород в соединениях типа метана и этана,нереакционноспособных в обычных условиях, разрываются родий-, рений- и иридийорга-ническими комплексами. Надежда на осуществление синтеза сложных молекул из моноуглеродных (моноксида и диоксида углерода) подкрепляется недавними экспериментами, в которых наблюдалось образование углерод-углеродных связей на металлических центрах в составе растворимых металлоорганических соединений. Большое значение имеет синтез соединений с кратными связями между углеродом и металлом. Такие соединения катализируют взаимное превращение (метатезис) различных этиленов, проводимое с целью получения исходных материалов для производства полимеров. [c.51]


    Часть 2 посвящена основам катализа металлоферментами. Здесь сделана попытка уяснить, каким образом присутствие белков влияет на реакционную способность комплексов переходных металлов. На трех примерах детально рассматривается, как белок может влиять на термодинамику отдельных стадий процесса [например, на константу равновесия координационного связывания молекулярного кислорода с железом (П) в гемоглобине и мио-глобиие], на кинетику отдельных стадий (например, в реакциях железа, находящегося в составе пероксидазы и каталазы) и на термодинамику всего процесса в целом (как, например, при эндотермическом восстановлении молекулярного азота в гидразин за счет другой термодинамически выгодной реакции). Изложение не ограничено только железом и молибденом. Приведены данные об изо-меразных реакциях витамина В12. Несколько ранее в этой части отмечается, что кофактором, с которым координационно связывается молекулярный кислород, может быть не только железо-порфириновый комплекс, но и негемовое железо, медь и даже ванадий природа испробовала различные пути решения проблемы координационной химии — проблемы связывания кислорода. [c.9]

    Как было отмечено выше, изонитрилы также могут выступать в качестве окислительных субстратов нитрогеназы [140—142]. Они восстанавливаются в углеводороды, содержащие атом углерода изонитрильной группы, и первичные амины, образующиеся из фрагмента R—N. Изонитрилы, так же как и азот, присоединяются к атомам переходных металлов концом молекулы. При восстановлении связанного метилизонитрила в качестве основного продукта шестиэлектронной реакции образуется метан, тогда как при восстановлении некоординированной молекулы изонитрила процесс идет в основном до диметиламина — продукта пятиэлектронной реакции. Такое сочетание свойств делает изонитрилы превосходным субстратом при изучении как биологических нитрогеназ, так и модельных систем. При использовании в качестве катализатора комплекса молибден — цистеин состава 1 1 основными продуктами восстановления изонитрила борогидридом натрия являются этилен и этан [137]. Как и в случае ацетиленовых субстратов, экспериментальные данные согласуются с каталитической активностью мономерных молибденовых комплексов. Восстановление слабо ингибируется молекулярным азотом и более эффективно подавляется окисью углерода. Опыты с N2 показали, что азот как ингибитор этой реакции восстанавливается до аммиака и что молекулы N2 и RN связываются одними и теми же центрами, по-видимому, атомами молибдена. Кроме того, азот и окись углерода — конкурентные ингибиторы восстановления изонитрилов нитрогеназой, что убедительно показывает наличие у молибдена свойств, необходимых для связывания и восстановления субстратов. На рис. 49 [c.318]

    Изученные реакции сравнительно простых неорганических комплексов с молекулярным азотом служат моделями хорошо известной фиксации азота биологическими системами, например Аго1оЬас1ег уте1ап(1 ). Из этих бактерий путем экстракции выделены азотсодержащие ферменты было найдено, что они содержат железо и молибден [132]. Эти ферменты восстанавливают азот до аммиака, а также катализируют восстановление N20 до N2, НГ до N2 и ННз и НСН до СН4 и МНз [133]. В настоящее время нет конкретных данных, согласно которым можно было бы представить по стадиям восстановление азота до аммиака этими ферментами. Предполагают, что атомы железа и/или молибдена в ферменте — это та активная часть фермента, где происходит первоначальная активация молекулярного азота. [c.432]

    В 1970 г. А. Е. Шиловым с сотр. [126] удалось показать, что в присутствии соединений молибдена и ванадия в водных и водноспиртовых растворах. азот восстанавливается некоторыми восстановителями до гидразина. В частности в присутствии соединений молибдена (M0O I3, К2М0О4) молекулярный азот в водных и водно-спиртовых средах при рН 10,5 восстанавливается соединениями Ti(III) главным образом до гидразина. По мнению авторов, процесс идет через образование активированного комплекса азота с молибденом [наиболее-вероятно Мо(1П)], а титан играет роль восстановителя. Выход гидразина увеличивается при введении в реакционную систему солей магния (сульфатов и хлоридов). Оптимальным оказалось соотношение Mg Ti = l 2. Выход гидразина растет с увеличением давления. С повышением температуры изменяются стё-хиометрические соотношения в реакционной системе-При низких температурах единственным продуктом является гидразин, при температуре выше 85°С в про- дуктах реакции обнаруживается аммиак. Энергия активации реакции восстановления азота до гидразина в системе, содержащей молибден и титан, составляет 54,4 кДж/моль [43]. Восстановителями могут быть также Сг(П) и V(II), которые в присутствии соединений [c.122]


Смотреть страницы где упоминается термин Молибден комплексы с молекулярным азотом: [c.322]    [c.325]    [c.122]    [c.400]    [c.690]    [c.676]   
Методы и достижения бионеорганической химии (1978) -- [ c.320 , c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы молекулярные

Молибден комплексы



© 2025 chem21.info Реклама на сайте