Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Параметры активации и кинетика отдельных реакций

    I. ПАРАМЕТРЫ АКТИВАЦИИ И КИНЕТИКА ОТДЕЛЬНЫХ РЕАКЦИИ [c.157]

    ПАРАМЕТРЫ АКТИВАЦИИ И КИНЕТИКА ОТДЕЛЬНЫХ РЕАКЦИЙ 161 [c.161]

    При решении вопроса о механизме сложного процесса теоретическое и экспериментальное изучение скоростей отдельных стадий или элементарных реакций ( кинетических индивидуумов — по образному выражению Н. А. Шилова) с участием радикалов и молекул является весьма важной кинетической задачей, поскольку в схемы превращений многих соединений различных классов входят отдельные радикальные реакции или даже целые блоки из них. При их помощи составляют или моделируют механизмы сложных химических превращений, необходимые для объяснения изученной кинетики брутто-реакции, наблюдаемого порядка, эффективной энергии активации и концентраций активных проводников химического превращения — радикалов, возникающих в зоне протекания процесса. Если экспериментальное изучение констант скорости соответствующих элементарных реакций по тем или иным причинам затруднено или невозможно, используют эффективные методы расчета кинетических параметров этих реакций. Разумеется, моделирование сложного процесса из отдельных элементарных реакций правомочно лишь тогда, когда реакции протекают независимо друг от друга. [c.214]


    В уравнениях кинетики простых реакций неизвестными параметрами являются порядки Vi по отдельным веществам i, предэкспоненциальный множитель ko и энергия активации Е. Число реагентов в простой реакции обычно не превышает трех и уравнение кинетики может быть записано а такой форме  [c.256]

    Влияние температуры. Поскольку значения энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, а прежде всего регулировать соотношение между скоростями распада и уплотнения и, что особенно важно, между скоростями реакций поликонденсации, тем самым свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию" в зависимости от целевого назначения процесса. С позиций получения кокса с лучшей упорядоченностью структуры коксование сырья целесообразно проводить при оптимальной температуре. При пониженной температуре ввиду малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые будут препятствовать дальнейшим реакциям уплотнения и формированию мезофазы. При температуре выше оптимальной скорость реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средней (оптимальной) температуре коксования (= 480 °С), когда скорость реакций деструкции и уплотнения соизмерима с кинетикой роста мезофазы. Коксующий слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.177]

    Изучение кинетики термоокислительной деструкции наполненного ПВС позволило установить, что кинетические параметры процесса, определяемые с использованием уравнения Колмогорова - Ерофеева, меняются во времени даже при одной и той же температуре деструкции. Это свидетельствует о наличии различных механизмов термоокисления ПВС на отдельных стадиях процесса. Энергия активации термоокисления наполненного ПВС на начальном этапе составляет 56,5, а на глубоких стадиях-97,0 кДж/моль. При этом константа скорости процесса снижается в 1,5-2 раза. Порядок реакции, вычисленный из начальных участков кинетических кривых, сравнительно низкий ( < 0,5), что свидетельствует о диффузионном характере процесса окисления ПВС на начальной стадии [184]. Порядок реакции на глубоких стадиях разложения наполненного ПВС близок к единице. Введение наполнителей существенно уменьшает продол- [c.126]


    В книге систематизируются имеющиеся в настоящее время данные по кинетике различных газофазных реакций (распада, ассоциации, замещения и др.) и даны простые правила, с помощью которых могут быть найдены параметры уравнения Аррениуса в рамках теории переходного состояния. Приводятся многочисленные конкретные примеры расчета энергии активации и предэкспонентов различными методами. Автор деталь- но анализирует отдельные элементарные акты газофазных реакций и кинетические теории столкновений и переходного состояния, дает анализ стерического фактора и роли химических переходных состояний в сложных реакциях, стерических затруднений резонансу в переходном комплексе. Большое внимание уделяется вопросу о роли процессов переноса энергии при газофазных реакциях и реакциям ионов. [c.6]

    Данные по механизму и кинетике химических реакций имеют не только чисто теоретическое, но и большое практическое значение. Познание механизма реакций заключается в установлении энерге — тически наивыгодных реакционных маршрутов, структуры образующихся в отдельных микростадиях промежуточных веществ (актив — ных комплексов, частиц и др.) в зависимости от типа и строения реагирующих молекул и способа активации реакций. В свою очередь, мехаьсизм реакций является основой для установления кинетических закономерностей протекания реакций во времени в зависимости от параметров химического процесса. [c.16]

    С. Рассчитаны термодинамические параметры активации реакции. Реакция сопрововдается вторичными превращениями. Отдельно изучены кинетика этерификации хлоруксусной кислоты в метаноле и кинетика метанолиза метилхлорацетата, ведущая к образованию диметилового эфира, показано, что последняя реакция катализируется водой. [c.422]

    Изучена кинетика взаиыодействия ядернозамецен-ных р -хлоргидринов стирола с гидроксилом Б водном растворе. Определены константы отдельных стадий механизма реакции и вычислены параметры активации. [c.89]

    Применяя комплекс физических и физико-химических методов исследования, различные авторы часто получают не совпадающие по абсолютным величинам параметры, которые характеризуют кинетику гидратации, например, энергию активации [231, 230], но отдельные моменты процесса гидратации в работах [221 —232, 56— 58] описаны аналогично. Обобщая их, можно считать установленным, что первоначальная быстрая реакция гидратации, идущая с выделением тепла, в течение нескольких минут приводит к образованию высокоизвестковогб гидросиликата кальция. Он очень плотно прилегает к негидратированному зерну СдЗ и тем самым на некоторое время затормаживает дальнейшую гидратацию. За этот период успевает прореагировать не более Ъ—5% СдЗ. Глубина прореагировавшего в течение 2 ч слоя составляет около 0,03 мк [c.76]

    В работах [43,45,46] было исследовано разложение низших ( .- J пероксикислот в тефлоновых реакторах. Была отдельно рассмотрена кинетика гомогенного и гетерогенного маршрутов реакции распада. Энергия активации суммарного процесса гомогенного распада установлена с точностью 15 кДж/моль. Вклад индуцированного разложения в суммарную кинетику не установлен. Константы скорости гомогенного распада пероксикислот С,—С4 несколько уменьшаются с ростом молекулярной массы, кинетические параметры разложения пероксикислот С —С близки между собой. Основными продуктами распада, например пероксиуксусной кислоты являются СО2 ( 90%) и уксусная кислота ( 10%). [c.176]

    Из данных таблицы видно, что на кинетические параметры весьма существенное влияние оказывает скорость нагрева смеси, при этом с увеличением скорости нагрева энергия активации возрастает тем значительнее, чем меньше реакционная способность карбоната. С повышением скорости нагрева увеличивается также и порядок реакции. Такое влияние скорости нагрева на кинетические параметры обусловлено недостаточной теплопроводностью смесей, в результате чего выравнивание температур эталона и пробы замедляется. Аналогичное явление наблюдается и в случае увеличения навески смеси (более 0,5 г). По мере уменьшения скорости нагрева максимум на кривой ДТГ размывается, а это, в свою очередь, приводит к погрешности при расчете кинетических параметров. Проведенные нами опыты на смесях карбонатов щелочных металлов с окисью железа показывают, что при изучении кинетики твердофазных гетерогенных процессов в каждом отдельном случае должны быть экспериментально лодобраны скорость нагрева смеси и величина навески, при которых обеспечивается удовлетворительный теплообмен между пробой и зоной нагрева. [c.22]


Смотреть главы в:

Спутник химика -> Параметры активации и кинетика отдельных реакций

Спутник химика -> Параметры активации и кинетика отдельных реакций




ПОИСК





Смотрите так же термины и статьи:

Активация реакцйи

Параметры реакции



© 2025 chem21.info Реклама на сайте