Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

зеркальный

Рис. 11. Тетраэдрическое расположение связей атомов углерода допускает две конфигурации, одна из которых является зеркальным отображением другой. На рисунке показаны два возможных варианта расположения атомов в молекуле молочной кислоты. Рис. 11. <a href="/info/594429">Тетраэдрическое расположение</a> связей атомов углерода допускает две конфигурации, одна из которых является <a href="/info/1372835">зеркальным отображением</a> другой. На рисунке показаны два <a href="/info/27323">возможных варианта</a> расположения атомов в <a href="/info/201716">молекуле молочной</a> кислоты.

Рис. 74. Оптическая схема спектрофотометров (СФ-4, СФД-2, СФ-5) /-ИСТОЧНИК излучения 2-зеркало-копдепсатор Л —плоское зеркало 4 —щель монохроматора 5 — зеркальный объектив 6 — кварцевая диспергирующая призма или дифракционяая решетка 7 —кювета в — линза 5 — фотоэлемент. Рис. 74. <a href="/info/486592">Оптическая схема спектрофотометров</a> (СФ-4, СФД-2, СФ-5) /-<a href="/info/141359">ИСТОЧНИК излучения</a> 2-зеркало-копдепсатор Л —<a href="/info/870671">плоское зеркало</a> 4 —<a href="/info/889463">щель монохроматора</a> 5 — <a href="/info/1725115">зеркальный объектив</a> 6 — кварцевая <a href="/info/889538">диспергирующая призма</a> или дифракционяая решетка 7 —кювета в — линза 5 — фотоэлемент.
    Таким образом, четыре связи атома углерода располагаются симметрично относительно атома, и симметрия нарушается лишь в том случае, когда все четыре связи присоединяются к различным атомам или группам атомов. Поскольку присоединение может быть осуществлено двумя различными способами, полученные фигуры представляют собой зеркальные изображения друг друга. Это дает как раз тот тип асимметрии, который Пастер обнаружил в кристаллах винной кислоты. [c.88]

    Вспомните задачу 4.5 — о копченой рыбе. Уверен, что эта задача не вызвала у Вас восторга скорее всего она не по Вашей специальности, да и вообще проблема сохранения копченой рыбы — где-то в стороне от романтики, К тому же вряд ли Вы знаете, с какой стороны подступиться к этой задаче... Между тем задача 4.5 — просто-напросто двойник задачи 1.1. Или, если хотите, зеркальное ее отображение... В задаче 1.1 надо помешать горячему веществу (жидкий шлак) общаться с веществом холодным (воздух). В задаче 4.5 требуется помешать холодному веществу (замороженная копченая рыба) общаться с теплым воздухом. В первом случае ввели прослойку застывшей пены почему бы не использовать этот прием вторично .. Застывшую пену в пер- [c.67]

    Ввиду полной симметричности двухколонной ректификационной установки, расчетная диаграмма для случая, когда верхняя секция первой колонны работает как лютерная, а верхняя секция второй колонны—как концентрационная, представится своеобразным зеркальным отображением рассмотренного ранее обратного случая. Эта расчетная диаграмма представлена на фиг. 38. Ход расчета по ней аналогичен ранее описанному расчету по диаграмме, приведенной на фиг. 37. [c.114]

    Для решения этой задачи используем метод отображения источников и стоков. Зеркально отобразим скважину-сток А относительно контура питания и дебиту скважины-изображения А припишем противоположный знак, т. е. будем считать ее скважиной-источником. Теперь рассмотрим в бесконечном пласте совместную работу двух скважин скважины-стока А с дебитом д и скважины-источника А с дебитом- . Потенциал в любой точке М, находящейся на расстоянии от скважины Л и - от скважины А  [c.110]


    Решение задачи заключается в следующем. Цепочка скважин-стоков отображается зеркально относительно контура питания в скважины-источники, и рассматривается интерференция двух цепочек скважин в неограниченном пласте. [c.113]

    При наличии в полубесконечном пласте нескольких скважин, каждую из них следует зеркально отобразить относительно прямолинейной непроницаемой границы. [c.155]

    После проведения перечисленных операций на ось III — III наносятся с помощью рулетки точки под установку тарелок согласно чертежу. Для получения кольцевых рисок под установку опорных элементов тарелок в корпусе над намеченной точкой на оси III—III устанавливается приспособление для оптической разметки. Настроить оптическую головку разметчика надо так, чтобы луч, отраженный от ее зеркальной грани на приемный экран 6 ОКГ, совпал с визирным лучом. Вращением поляризационного светофильтра добиваются получения на поверхности корпуса сетки с необходимой для разметки яркостью и четкостью изображения, а винтом продольного перемещения оптической головки совмещают центр сетки, проектируемой на корпус, с намеченной точкой на главной оси III—III. Значения допускаемого несовпадения (/), отраженного и визирного лучей в зависимости от расстояния тарелки до приемного экрана (L) приведены ниже  [c.216]

    Рнс. 153. Прибор с зеркальным отражением света. [c.89]

    Помутнение и начало кристаллизации устанавливаются сравнением с прозрачным эталоном в приборе с зеркальным отражением света. [c.175]

    Величина фототока, получающегося после прохождения излучения и попадания его на фотоэлемент И, измеряется зеркальным гальванометром 7 чувствительностью 10" а/мм. [c.108]

    Диаграмма /кип.— показана схематически на рис. VI, 9. Так как компонент А с более высокими давлениями пара рд (рис. VI, 8) имеет при данном давлении более низкую температуру кипения (/а), то диаграмма /кип.—х имеет зеркально-подобный вид по отношению к диаграмме р—х (имеется только качественное подобие). [c.196]

    Современная электроизмерительная аппаратура позволяет измерять э.д.с. с большой точностью. Реохорд заменяется сериями из десяти катушек сопротивления, составляющих декады , которые включаются последовательно для компенсации измеряемой э.д.с., при этом в рабочей цепи аккумулятора падение напряжения не изменяется. Чувствительный зеркальный гальванометр используется как нуль-инструмент. Принцип компенсационного измерения э.д.с. и сравнения измеряемой э.д.с. со стандартной сохраняется. [c.525]

    Различие это связано с тем, что, в отличие от воображаемого заряда, на электрон, удаляющийся от металла, действуют силы квантовой природы (так называемые силы электрического зеркального изображения), а также с тем, что электрон в металле (в отличие от воображаемого заряда) обладает нулевой кинетической энергией. [c.534]

    Рис, 130. Тетраэдрические модели молекул зеркальных изомеров молочной кислоты. [c.461]

    Я на стенках сосуда, образуя зеркальный налет) и оксид меди (И) [c.485]

    Регистрирующий микрофотометр МФ-4. Регистрирующий микрофотометр предназначен для автоматической записи на фотопластинку плотности почернения фотографической эмульсии. Принцип его устройства основан на том, что свет, прошедший через спектрограмму / (рис. 36) узким пучком, действует на фотоэлемент, связанный с зеркальным гальванометром. Зеркальце зеркального гальванометра освещается светом, отражение которого направляется на фотопластинку, помещенную в кассете верхнего столика 2. При движении фотометрируемой спектрограммы и верхнего столика световой пучок производит запись кривой плотности почернения (рис. 37). [c.56]

    Теория движения газов в печах разработана В. Е. Грум-Гржи-майло. Согласно его учению дви.кенне газового потока в печах можно рассматривать как движение легкой жидкости в тяжелой, поскольку нагретые газы значительно легче окружающего холодного воздуха. Другими словами, движение газового потока в печах можно рассмат-рмиать как движение жидкости в зеркальном отображепни. [c.133]

    Поясним это примером. На рис. 85 изображено дви кение жидкости п газа через порог. Жидкость стремится вниз, а газ — вверх. В результате двиисеиие газа является 1 ак бы зеркальным отображением движеипя кидкости. [c.133]

    ОТ данной фазы. Выражение в непосредственной близости нельзя считать достаточно строгим под ним обычно подразумевают то минимальное расстояние от поверхности данной фазы, иа котором уже проявляются силы зеркального отображения это расстояние имеет порядок 10- м. Знак -потенциала совпадает со знаком заряда конца диполя, лежащего ближе к поверхности раздела фазы, т. е. с зарядом его внешнего конца, внешний потенциал г соответствует работе переноса элементарного отрицательного заряда из бесконечности в вакууме в точку, также находящуюся в вакууме, но расположенную в непосредственной близости от поверхности данной фазы потенциал г ) является результатом нескомпенсиро-ванного свободного заряда фазы а. [c.25]

    Закоц Ламберта распространяется только на диффузно-тепло излучающие поверхности, т. е. на такие товерхности, которые отражают падающий на них луч не зеркально, а равномерно (в виде пучка) во все стороны пространства, как это происходит, например, с гладкой белой поверхностью. Закон Ламберта не распространяется на полированные поверхности. В практике он находит применение в связи с тем, что в больщинстве случаев речь идет о грубой поверхности и об оксидированных металлах. [c.131]


    Поверхности гильз быстроходных мощных дизельных двигателей обработаны хо-нингованием. В результате такой финишной обработки на поверхности остаются следы инструмента глубиной около 3 мкм, в которых удерживается масло, что способствует постоянной смазке поверхностей цилиндров. Скапливание в кольцевых канавках отложений приводит к полированию стенок цилиндров bore polishing) до зеркального блеска (рис. 2.9). С гладкой поверхности кольца стирают масляную пленку что приводит к нарушению смазывания и увеличению расхода масла. Во всех европейских спецификациях на [c.53]

    Большинство масел для дизельных двигателей не имеют SHPD категории, но также предназначены к тяжелым условиям работы. Их интервал замены короче, чем SHPD. Такие масла имеют европейские классы качества ССМС D4 и АСЕА Е2-96. Подавление полирования цилиндров у этих масел ниже, при стандартном испытании допускается образование не более 8-16% зеркальной полированной поверхности (см. табл. 4.2). [c.109]

    Используя метод отображения источников и стоков (см. гл. 4), зеркально отобразим скв. 1 относительно непроницаемой границы АО В, и дебиту отображенной скважины (скв. 2) припищем тот же знак, что и у реальной скв. 1, т.е. будем считать скв. 2 добывающей с дебитом Q. [c.155]

    Однако оказалось, что дело обстоит сложнее. Выяснилось, что состояние, отвечающее форме XII, соответствует барьеру перехода между двумя другими (еще не рассмотренными) более выгодными конформациями. Представим себе мысленно, что мы взяли каждой )укой за один из тех двух атомов С, с которыми связаны атомы -Н, и потянули один к себе, а другой от себя. Тогда создающие наибольшее напряжение /-Н атомы отодвинутся друг от друга и потенциальная энергия молекулы уменьшится. Относительное расположение остальных атомов Н тоже несколько изменится, отдаляясь от заслоненной конформации этана и приближаясь к заторможенной, т. е. еще несколько уменьшая напряженность. Эта конформация получила название гаисг-формы, или скошенной (искаженной) ванны. Переменив направление движения рук на диаметрально противоположное, получим зеркально-симметричную тв сг-форму. Их часто изображают так  [c.39]

    В КГ1Т0ПЫХ асимметрический атом углерода (оп в формуле помечем звездочкой) находится в центре тетраэдра. Нетрудно заметить, что эти модели невозможно совместить в пространстве они нот. строены зеркально и отображают пространственную конфигурацию молекул двух различных веществ (в данном примере молочных кислот), отличающихся некоторыми физическими, а главным образом, биологическими свойствами. Такая изомерия называется зеркальной стерео изомерией, а соответствующие изомеры— зеркальными изомерами. Различие в пространственном строении зеркальных изомеров может быть представлено и при помощи структурных формул, в которых показано различное расположение атомных групп при асимметрическом атоме например, для приведенных на рнс. 130 зеркальных изомеров молочной кислоты  [c.462]

    Двумя другими операциялш симметрии, применяемыми в отдельных случаях, являются зеркально-поворотная симметрия, состоящая из вращения и отражения, и инверсия в центре, при которой координаты х, yaz м( ияют свои знаки на обратные. [c.299]

    Очень удобны для нагревания вллж-ных осадков с целью их высушивания так называемые инфракрасные излучатели рис. 86). Лампу инфракрасного излучения помещают в зеркальный отражатапь, укрепленный на штативе. Изменяя расстояние высушиваемого тела от лампы можно регулировать температуру обогрева. [c.75]

Рис. XVIII, 4. Схема зеркального изображения диполя молекулы адсорбата в металле. Рис. XVIII, 4. Схема <a href="/info/10763">зеркального изображения</a> <a href="/info/701621">диполя молекулы</a> адсорбата в металле.
    Предельным случаем поляризации адсорбенга диполем адсорбирующейся молекулы является адсорбция диполей на металлах. Если рассматривать металл как непрерывное проводящее тело, в нем возникает зеркальное изображение диполя молекулы адсорбата с противоположным расположением зарядов (рис. XVIII, 4), что вызывает притяжение. Энергия притяжения диполя и его зеркального изображения может быть вычислена по закону Кулона  [c.494]

    Стсреоизомеры с асимметрическими атомами, в том числе и зеркальные, различаются по оптическим свойствам, а именно по влиянию на пропускаемый через них поляризованный свет поэтому их называют также оптическими изомерами (см. в учебниках органической химии). [c.462]

    Все соединения серебра легко восстанавливаются с выделением >деталлнческого серебра. Если к аммиачному раствору оксида серебра (I), находящемуся в стеклянном сосуде, прибавить в ка-честве восстановителя немного глюкозы или формалина, то металлическое серебро выделяется в виде плотного блестящего зеркального слоя на поверхности стекла. Этим способом готовят зеркала, а также серебрят внутреннюю поверхность стекла в сосудах Дьюара н о термосах для уменьшения потери теплоты лучеиспусканием. [c.579]

    К геометрической изомерии можно отнести и зеркальную (оптическую) изомерию, рассмотренную ранее (стр. 462) на примерах органическик соединений. Например, комплексы [СоЕпз]Си (Еп—этн-лендиамин) и мс-[СоЕп2С121С1 существуют в виде двух зеркальных антиподов  [c.593]

    Свет от источника света / (рис. 21) проектируется конденсором 2 и плоским зеркалом Я на входную щель прибора 4. Изображение входной щели сферическим зеркалом 5 фокусируется на кварцевую призму 6 с зеркальной грапььэ. Свет, разложенный в спектр, вновь проектируется сферическим зеркалом 5 на нижнюю часть щели 4, которая вырезает из спектра мо Юхроматнческий участок. Прн вращении призмы на плоскости выходной щелн изображение спектра будет [c.34]

    Изображение освещенной снаружи входной щели отражается плоским зеркалом 7 и проектируется сменным объективом 8 иа сменную призму 9. При двойном прохождении света через призму с зеркальной гранью свет разлагается в спектр, который проектируется объективом 8 на фотографическую пластинку 10. Вследствие больнюго расстояния в ходе луча близко расположенные спектральные линии на фотографический пластинке получаются раздельно. Для выполнения [c.39]

    Свет от источника света / (рис. 29), представляющего собой сили-товый стержень, нагреваемый электрическим током, проходит через защитное сгекло 2, отражается от плоского посеребренного снаружи зеркала на вогнутое сферическое зеркало 4, которое проектирует свет через защитное стекло 5 и кювету с исследуемым веществом 7 на входную щель монохроматора 9, защищенную стеклом 8. Между защитным стеклом 5 и кюветой 7 помещается зеркальная заслонка 6. Изображение входной Н1,ели 9 проектируется вогнутым параболическим зеркалом 10 на днсперсиортую призму //, где свет разлагается в спектр. Выходящий из призмы свет отражается плоским зеркалом 12 и вновь проходит через призму 11. Изобрал<ение спектра проектируется параболическим зеркалом 10 и плоским зеркалом 13 на плоскость 14 с ВЫХ0Д1ЮЙ щелью, вырезающей нз спектра монохроматический участок. Изображение выходной щелн, отраженное плоским зеркалом 15, [c.43]

    Э, д, С. термоэлемента усиливается при помощи фотоэлектроопти-ческого двухкаскадного усилителя. Термоэлемент монохроматора соединен проводником с чувствительным зеркальным гальванометром (чувствительность 1,1-10 а мм1м). При возникновении э. д. с. зер- [c.44]

    Открыть зеркальную заслонку 6 (см. рис, 29) на осветителе монохроматора. 12. Установить ширину входной ш,ели прибора, для чего вращая барабан длии во т вручную от начального до конечного деления (пределы шкалы длин волн указаны в описании работы), наблюдать за отклонением стрелки записывающего приспособления. Если стрелка записывающего приспособления выходит за пределы деления 80, то уменьшить ширину щели монохроматора, если нри максимальном отклонении стрелки она не достигает деления 80, то следует увеличить щель до таких размеров, когда максимальное отклонение стрелки будет соответствовать де,/1ению 80. 13. Закрыть зеркальную заслонку 6 (см. рис. 29) и, откорректи )овав положение стрелки корректором установки нуля. 5 (см. рис. 28). проверить максимальное отклонение стрелки. Стрелка записывающего приспособления [c.46]

    Регистрирующий микрофотометр МФ-4 с потенциометром ЭПП-09. Оптическая схема ирибора аналогична оптической схеме микрофотометра МФ-2. Различие заключается липJь в том, что фотоэлемент микрофотометра соединен не с зеркальным гальванометром, а с потенциометром ЭПП-09 через усилительное устройство. [c.58]


Смотреть страницы где упоминается термин зеркальный: [c.474]    [c.225]    [c.476]    [c.12]    [c.88]    [c.316]    [c.109]    [c.33]    [c.47]    [c.54]    [c.63]   
Основы химии Том 2 (1906) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте