Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ползучесть коррозионная и разрушение

    Глава 1. КОРРОЗИОННАЯ ПОЛЗУЧЕСТЬ И РАЗРУШЕНИЕ МАТЕРИАЛОВ [c.9]

    Коррозионное воздействие, например со стороны окислительной газовой среды в турбогенераторе или установке для газификации угля, в сочетании с высокой температурой может приводить к преждевременному разрушению конструкций даже при сравнительно низких механических напряжениях. В принципе можно предусмотреть меры против пластической деформации при высоких температурах еще на стадии проектирования, повысив сопротивление ползучести, длительную прочность (время до разрушения) и вязкость разрушения материалов. Однако, к сожалению, современные знания о ползучести и разрушении материалов под напряжением, даже в отсутствие осложняющих факторов, связанных с воздействием внешней среды, являются в лучшем случае качественными [I—7], Известные проявления влияния среды на ползучесть и разрушение материалов под напряжением еще требуют анализа, обобщения и систематизации. [c.9]


    Глава начинается с достаточно элементарного анализа проблемы ползучести и разрушения конструкционных сплавов под напряжением при высоких температурах и описания различных эффектов, наблюдаемых при воздействии внешней среды. Затем следует краткий обзор высокотемпературной коррозии и обсуждение многочисленных путей ее влияния на механические свойства сплавов, после чего уже непосредственно рассмотрены коррозионная ползучесть и разрушение материалов вследствие коррозии под напряжением. Следует отметить, что в данной главе рассматриваются процессы, протекающие при высоких температурах, как правило выше 0,5 Тт, где Тт — абсолютная температура плавления рассматриваемого сплава. Поэтому в круг обсуждаемых вопросов не входят такие сложные явления, как коррозионное растрескивание под напряжением, охрупчивание при контакте с жидким металлом или понижение сопротивления излому, вызванное поверхностно-активными веществами. По этим вопросам имеются авторитетные обзоры [8, 9]. [c.9]

    КЛАССИФИКАЦИЯ ТИПОВ КОРРОЗИОННОЙ ПОЛЗУЧЕСТИ и РАЗРУШЕНИЯ [c.12]

    Используя введенные показатели Р, в качестве первого шага на пути к систематизации имеющейся информации, связанной с коррозионной ползучестью и разрушением материалов, введем классификационную схему, представленную в табл. 1. Эта классификация используется в данной главе и, возможно, будет принята в качестве стандартной схемы и в дальнейшем. Таблица содержит все возможные комбинации знаков трех показателей, т. е. все типы поведения при коррозионной ползучести и разрушении. Например, поведение типа 1А подразумевает, что воздух оказы- [c.13]

Таблица 1. Классификационная схема типов поведения материалов при коррозионной ползучести и разрушении под напряжением в средах, отличных от лабораторного воздуха (по сравнению с поведением в лабораторном воздухе ) Таблица 1. <a href="/info/1071983">Классификационная схема</a> <a href="/info/50308">типов</a> поведения материалов при <a href="/info/568145">коррозионной</a> ползучести и разрушении под напряжением в средах, отличных от <a href="/info/71480">лабораторного воздуха</a> (по сравнению с поведением в лабораторном воздухе )
    Общие закономерности коррозионной ползучести и разрушения [c.18]

    Важное значение с точки зрения коррозионной ползучести и разрушения материалов имеет вопрос об адгезии оксида к металлу, так как окалина, отслаивающаяся от подложки, конечно же, не оказывает влияния на механические свойства материала. Например, высокотемпературная коррозия, как уже обсуждалось, обязательно подразумевает ухудшение адгезии или даже полное отделение окалины. Отслаивание оксида также может быть вызвано рассмотренными выше температурными напряжениями. Различные механизмы отслаивания оксидов, в том числе связанные с уменьшением пластичности, ползучестью и усталостью материала, рассмотрены в обзоре [135]. Согласно экспериментальным данным, отслаивание оксида может протекать легко. Например, на сплаве Ni—20 Сг—4 А1 отделение оксида наблюдалось после одного цикла изменения температуры от 300 °С до комнатной [135]. Исключение могут составлять сплавы, содержащие легирующие добавки РЗЭ, улучшающие адгезию оксида к металлу [111]. [c.31]


    Для серьезного анализа условий, в которых поверхностное и внутреннее растрескивание становится важным фактором коррозионной ползучести, необходимо более глубокое и систематическое исследование всех аспектов ползучести и разрушения. Пока же, черпая необходимые сведения из работ, не связанных непосредственно с ползучестью, и наблюдая различия в микроструктуре разрушенных образцов после испытаний на коррозионную ползучесть, мы можем лишь строить догадки в отношении влияния среды на высокотемпературное растрескивание прн ползучести. [c.44]

    В ЭТОЙ главе дан обзор современного состояния знаний в области коррозионной ползучести и разрушения материалов. Понимание этих процессов основано главным образом на обобщении результатов многочисленных исследований коррозионной ползучести, не содержащих, как правило, систематического параметрического анализа. Определенная информация получена также в смежных областях, например при исследовании коррозионной усталости и прочностных свойств плакированных металлов при комнатной температуре. К числу основных результатов следует отнести выводы об упрочняющем воздействии поверхностных оксидов (окалин) и об ухудшении параметров ползучести и разрушения в горячих агрессивных средах вследствие разрушения поверхностной окалины и химического воздействия на металл. [c.46]

    Если скорость ползучести е представить как е = бн + Ба (где 8 — скорость ползучести при статической усталости под действием только напряжения, этот процесс развивается на участке I — скорость ползучести при коррозионном разрушении под влиянием напряжения и среды, участок III) и принять, что на участке III величиной е можно пренебречь, т. е. что 8 = 8а= К аС , ТО [c.143]

    Анализируя современное состояние науки о прочности твердых тел, в том числе резин, в отсутствие агрессивных сред, пришли к заключению, что наиболее правильно пользоваться показателями, отражающими время воздействия напряжения, а именно долговечностью т (или временем до разрыва) и скоростью деформирования резины ку (или скоростью ползучести). Для характеристики коррозионного разрушения эти показатели должны определяться при одновременном действии на резину напряжения и среды. [c.228]

    Учитывать различия при расширении и перепады давлений. Проверять правильность и точность сборки, предусмотренной проектом (с учетом расширения и сжатия металлов, а также деформации ползучести). Собирая детали с непредусмотренным натягом и подвергая их избыточным местным напряжениям, можно создать условия, вызывающие коррозионные разрушения. [c.207]

    Рациональное применение присадок для смазочных масел основывается на связи между качеством присадок и необходимым уровнем улучшения качества смазочного масла. Этот уровень определяется предельным состоянием, достигаемым машиной или механизмом и устанавливаемым по различным видам износа механический износ, усталостные разрушения, ползучесть, старение материала, коррозионный износ, химический (коррозионно-механический) износ и др. Химический износ особенно значителен при использовании присадок химического действия. [c.129]

    Изложены вопросы коррозионно-механической прочности металлов, влияние коррозионных сред на характеристики ползучести. Описаны новые представления о механизме коррозионного растрескивания и связи его с водородным охрупчиванием. Рассмотрены кинетика и механизм влияния водородного охрупчивания в процессе коррозионного растрескивания различных сталей и сплавов. Показана зависимость этих видов разрушения от различных структурных факторов. Приведены сведения о коррозионном растрескивании высокопрочных алюминиевых и титановых сплавов, механизме этих процессов и способах защиты. [c.4]

    В первой главе обобщены теоретические представления и практические результаты по воздействию среды на процессы ползучести. Эти материалы позволяют осветить изменение кинетики разрушения под напряжением не только в плане механизмов, идентичных коррозионному растрескиванию, когда речь идет о достаточно сильном солевом коррозионном воздействии при повышенных температурах, но и в общем плане, в случае сложного влияния относительно слабых сред таких, как воздух. [c.6]

    Труднее объяснить часто наблюдаемые переходы между поведением I и II типов, вызванные изменениями температуры и приложенных напряжений. Наиболее вероятно, что такие переходы обусловлены многочисленными переменными параметрами, связанными с типом и морфологией оксида, механизмом ползучести и составом сплава. Например, можно ожидать, что толстые окалины, образующиеся при высоких температурах на стойких к окислению сплавах, особенно с высоким содержанием хрома или алюминия, будут повышать сопротивление ползучести на воздухе. Высказывались предположения, что изменение типа поведения с температурой отражает переход от высокотемпературного упрочнения, связанного с окалиной, к отрицательному воздействию адсорбции газов (особенно в вершинах трещин) при более низких температурах [23—27]. В то же время изменения температуры могут оказывать и косвенное влияние, изменяя преобладающий тип ползучести [1—6]. Это может быть причиной и переходов, вызванных изменением уровня проложенных напряжений [1—6]. Действительно, в состоянии очень высокого напряжения может отсутствовать стадия установившейся ползучести и тогда по существу мы наблюдаем влияние среды на режим ускоренной ползучести или на разрушение материала. В связи с этим следует заметить, что, к сожалению, большинство исследований коррозионной ползучести, а также и большинство технических испытаний на ползучесть [1—6] не сопровождаются непрерывной регистрацией деформации при определении времени до разрушения (длительной прочности). [c.41]


    Во всех полных исследованиях коррозионной ползучести, рассмотренных в этой главе, уменьшение скорости установившейся ползучести под влиянием среды всегда сопровождалось увеличением времени до разрушения образца, т. е. длительной прочности, а меньшие времена всегда были следствием более высоких скоростей ползучести. Таким образом, независимо от типа разрушения, обратное соотношение между скоростью ползучести и длительной прочностью, описываемое уравнением (3), справедливо и при наличии влияния среды. [c.41]

    Что касается пластичности разрушения, то она при этом не подчиняется какой-либо определенной закономерности. Независимо от улучшения или ухудшения параметров ползучести на воздухе, наблюдалось как увеличение, так и уменьшение пластичности нри разрушении. Однако, сравнивая результаты наиболее полных, исследований коррозионной ползучести, можно подметить некоторые характерные металлографические особенности преимущественных типов разрушения в различных средах. [c.41]

    Внутреннее окисление, но-видимому, всегда упрочняет сплавы. В то же время воздействие коррозии на границы зерен и их скольжение пока изучены недостаточно. Еще меньше исследовано влияние коррозии на разрушение и высокотемпературное растрескивание в окислительных средах. Эти явления можно рассматривать только как совокупность конкурирующих процессов, таких как расклинивающее действие окисла, притупление растущих трещин и адсорбция газов. Изменение характера коррозионной ползучести в зависимости ог размера зерна сплава, температуры и уровня приложенного напряжения показывает, что это комплексное явление действительно может быть описано только как совокупность конкурирующих и взаимодействующих процессов, (табл. 5). [c.46]

    Возникновение прикладной механики разрушения и ее интенсивное развитие теория, эксперименты на образцах и натурных крупногабаритных деталях, корпусах, трубах применение оптической и электронной микроскопии для фрак-тографии методы расчета прочности при наличии трещин (первые практические применения стандартизация и нормативные документы) развитие методов расчета на прочность, учитывающих начальные стадии разрушения, ползучести, пластических деформаций, а также высокие температуры, радиацию и коррозион- [c.7]

    После того как материал для сосуда выбран, необходимо сопоставить уровень напряжений и деформаций в опасной зоне сосуда с характеристиками разрушения материала с тем, чтобы рассчитать долговечность сосуда. Поскольку свойства металла определяются по результатам испытаний при одноосных напряжениях, необходимо принимать во внимание сложнонапряженное состояние в реальном сосуде и, кроме того, учитывать изменение напряжений во времени. Далее следует оценить влияние циклической напряженности на условия работы основного металла и сварных соединений. Если сосуд должен работать в коррозионных условиях, нужно принять во внимание возможное снижение характеристик ползучести и усталости металла. [c.87]

    Сосуды давления содержат зоны концентрации напряжении в виде конструктивных и случайных дефектов. Кроме того, дефекты могут возникать и распространяться в процессе работы сосуда при ползучести, усталости или коррозионных процессах. Таким образом, разрушение возможно при уровне напряжений [c.185]

    Одним из ярких примеров в этом отношении является хромистая (без молибдена) сталь (5% Сг), трубы из которой используют в теплообменной аппаратуре для очистки коррозионно-активн-ых масел. Эта сталь оказалась подвержена отпускной хрупкости при работе в интервале температур 325—625° С [37, 38], в результате чего при остановке теплообменников наблюдались хрупкие разрушения. Отпускную хрупкость, обусловленную выделениями вторичной фазы по границам зерен, можно исключить, добавляя молибден. Поэтому в настоящее время для труб теплообменной аппаратуры применяют сталь, содержащую 5% Сг и 0,5% Мо [1 ]. Молибден также добавляют и в другие хромистые стали (например, сталь с 1% Сг и 0,5% Мо и сталь с 2,25% Сг и 1% Мо), частично по указанной причине, но главным образом для улучшения прочностных свойств и повышения сопротивления ползучести. Кроме того, молибден увеличивает сопротивление стали коррозии в водородной среде. [c.211]

    Разрушения газоподводящих и особенно газоотводящих труб и коллекторов конвертированного газа довольно часто вызывается ползучестью металла труб и нарушениями теплоизоляции. Поэтому необходимо принимать меры, направленные на максимальное улучшение качества материалов, из которых их изготавливают. Для обеспечения герметичности системы необходимо принимать меры по улучшению качества запорной арматуры, регулирующих и предохранительных клапанов, работающих при высокой температуре в коррозионной среде, так как всякое нарушение герметичности при таких условиях может привести к аварии. [c.19]

    Порог концентрации. Учитывая, что коррозионное растрескивание является своеобразным видом статической усталости резин, можно было ожидать, что существует непрерывный переход значений скорости процесса разрушения (а следовательно, долговечности и ползучести) при отсутствии агрессивной среды к значениям этих характеристик при увеличении ее концентрации. [c.142]

    Главные направления рационального применения присадок для смазки промышленных машин и механизмов основываются на связи между качеством применяемых присадок и необходимым уровнем улучшения качеств смазочного масла . Этот уровень определяется предельным состоянием, достигаемым машиной или механизмом. Предельное состояние устанавливается по различным видам износа механический износ, коррозионный износ, усталостные разрушения, ползучесть, старение материала и др. [c.129]

    При коррозионном растрескивании такой расчет неприменим из-за резкого ускорения разрушения резины при наличии концентраторов напряжения, что в расчете не учитывается. Более общим, применимым как в отсутствие, так и при наличии коррозионного растрескивания, является использование для прогнозирования долговечности резин ее связи с ползучестью при различных концентрациях агрессивной среды. Так как разрушение растянутых резин в агрессивной среде является проявлением статической усталости материала под действием напряжения, ускоренной влиянием среды, то существует непрерывный переход между процессами в отсутствие и в присутствии агрессивной среды. Связь между долговечностью Тр и скоростью ползучести е в широком интервале концентраций (начиная с 0) [c.141]

    Известно, что большая группа изделий из резины при эксплуатации подвергается одновременному воздействию напряжения и внешней агрессивной среды. В этих условиях потеря работоспособности происходит за счет растрескивания, ползучести или полного разрыва материала. Подобное разрушение резин может быть объединено общим термином — коррозионное [c.225]

    Представления о значительной роли скорости деформации достаточно распространены. Менее известно, что коррозионное растрескивание может иметь место только выше ограниченного интервала скоростей деформации. В испытаниях при заданной нагрузке (поскольку трещина будет продолжать распространяться только в том случае, если скорость деформации вершины трещины будет выше определенной минимальной скорости, необходимой для растрескивания) следует ожидать, что развитие трещины будет временами приостанавливаться, особенно при напряжении ниже порогового [30, 31]. Более того, как при испытаниях по методу заданной постоянной нагрузки, так и постоянной деформации, скорость деформации уменьшается со временем за счет ползучести металла, если напряжения остаются в достаточной мере постоянными, т. е. скорость деформации зависит от времени, при котором устанавливаются необходимые для растрескивания напряжения и электрохимические условия. Ползучесть при постоянной нагрузке до установления электрохимических условий, необходимых для растрескивания, замедляет или даже предотвращает коррозионное растрескивание [30, 31]. Однако большинство убедительных доказательств важности скорости деформации получено при испытаниях, в которых задается скорость деформации, а не постоянная нагрузка. На рис. 5.9 показано влияние различных скоростей деформации сплава Mg—7А1 в хромат-хло-ридном растворе эти испытания проводили до полного разрушения образца, а достигаемую максимальную нагрузку измеряли чув- [c.238]

    Ранее этот метод использовали для сравнительного изучения влияния таких переменных факторов, как состав и структура сплава илп добавки ингибиторов к коррозионным средам, а также для исследования комбинированного влияния состава силава и коррозионной среды на разрушение в тех случаях, когда в лабораторных условиях не удавалось обнаружить растрескивания образцов при испытании по методу постоянной нагрузки или постоянной деформации. Таким образом, испытания при постоянной скорости деформации — относительно жесткий вид лабораторных испытаний в том смысле, что при их применении часто облегчается коррозионное растрескивание, в то время как другие способы испытания нагруженных гладких образцов не приводят к разрушению. С этой точки зрения рассматриваемый способ испытания подобен испытаниям образцов с предварительно нанесенной трещиной. В последние годы многие исследователи поняли значение испыта-Н1и"1 с использованием динамической деформации и теперь представляется, что испытания этого типа могут применяться гораздо более широко благодаря своей эффективности, быстроте и более надежной оценке исследуемых вариантов. На первый взгляд, может показаться, что испытания образцов на растяжение при малой скорости деформации до их разрушения в лабораторных условиях имеют небольшое сходство с практикой разрушения изделий при эксплуатации. При испытаниях по методу постоянной деформации и методу постоянной нагрузки распространение трещины также происходит в условиях слабой динамической деформации, в большей или меньшей степени зависящей от величины первоначально заданных напряжений. Главное заключается во времени испытаний, в течение которого зарождается трещина коррозионного растрескивания, и в структурном состоянии материала, определяющем ползучесть в образце. Кроме того, появляется все [c.315]

    Приведенный выше обзор феноменологических результатов, конечно же, не оставит ни у кого впечатления, что все основные особенности поведения материалов при коррозионной ползучести и разрушении уже известны. Действительно, данные о поведении П1 типа в основном потоке информации обнаружить не удалось. Поведение IV типа наблюдалось весьма редко, причем не для металла, а для керамики типов 51зЫ4 и Si [61]. Вместе с тем некоторые закономерности и тенденции все же выявляются (возможно, в результате проведения классификации при обработке литературных данных) и будут рассмотрены ниже. [c.18]

    В настоящее время очень велика потребность в полных параметрических исследованиях корпрзиоиной ползучести и разрушения с целью определения роли различных эффектов. В современной металлургии получение важных микроструктурных данных неизбежно отстает от накопления результатов механических испытаний. Материал данной главы показывает, что область коррозионной ползучести и разрушения могла бы стать исключением из этого правила. Действительно, высокотемпературная коррозия достаточно полно изучена под, микроскопом, чтобы судить, когда и как она происходит в сплавах. Теперь же необходимо установить влияние факторов среды на характеристики ползучести и разрушения в более систематических исследованиях, отдельные примеры которых были рассмотрены в данной главе. [c.46]

    Наиболее повреждаемые элементы теплоэнергетическо-I о оборудования — гибы труб. При умеренной рабочей температуре (до 370 °С) основным видом повреждения ги-бов являются коррозионно- усталостные трещины в нейтральной зоне. При более высоких температурах, при которых заметно проявляется ползучесть металла, разрушения возможны вследствие исчерпания длительной прочности или пластичности гибов. В ряде случаев, особенно при частых пусках котлов, может происходить растрескивание металла с внутренней стороны в районе нейтральной образующей. По внешнему виду разрушения делятся на хрупкие с сохранением исходной формы сечения гиба и вязкие со значительным раскрытием трещин и утонением стенки. Работоспособность высокотемператур- [c.6]

    Обычно процесс разрушения описывается введе шем Е1скоторой априорной характеристики повреждаемости, устанавливаемой сравнением следствий теории с экспериментальными данными. Таковы, например, уравнения повреждаемости в условиях ползучести [287], циклической усталости [198], коррозионного воздействия [4] и др. В частности, Фан Ки Фунг [275] в качестве функции меры повреждаемости материала при коррозионном растрескивании предлагает  [c.60]

    В то же время в случаях ускоренного роста трещин при окислении предполагается [18—21, 173, 177], что стимулирующее влияние окисления на поверхностное растрескивание и распространение трещин аналогично некоторым механизмам коррозионного растрескивания, таким как расклинивающее действие окисла [102] или растрескивание путем разрушения поверхностной пленки и репассивации [101, 178—182]. В обоих случаях ускорение растрескивания объясняется усиленной напряжением коррозией, заключающейся в чередующемся разрушении оксидной пленки и последующем быстром окислении незащищенного металла. Повышение скорости ползучести в средах, содержащих Na l, объяснялось либо подобным же ускорением растрескивания [183], либо общей коррозией под действием Na l [40], либо одновременным действием обоих факторов [184]. В любом случае следовало ожидать уменьшения пластичности, что и наблюдалось в действительности [40]. [c.45]

    Возможности коррозионного растрескивания нержавеющей стали под воздействием водяного пара были изучены Эделеану и Сноуденом, которые считают опасность такого растрескивания вполне реальной при наличии высоких напряжений. В сильно перегретом паре, например при температуре 600° и давлении 100 ат никакого коррозионного растрескивания не происходит, если поверхность стали чистая при наличии же хлористых загрязнений и кислорода происходит окисление и время до разрушения становится короче, чем в том случае, когда причиной разрушения является обычная ползучесть. При более низких температурах, в особенности при температуре ниже 400°, коррозионное растрескивание под воздействием пара давлением 100 ат может иметь место, но, вероятно, только в том случае, если сталь загрязнена такими веществами, как хлориды или щелочь. В присутствии загрязнений типа хлористых соединений растрескивание происходит быстро при температурах, близких к точке росы, но время до разрушения сильно возрастает, если пар перегревается на 20°. Растрескивание в присутствии хлоридов происходит только при наличии в среде кислорода. В присутствии же щелочи оно может происходить и без кислорода. Загрязнение хлоридами и щелочью может иметь место на поверхностях, на которых происходит процесс испарения, и в особенности на тех ограниченных участках, где загрязнения могут концентрироваться. Выброс нечистой воды из котла может явиться источником загрязнений. Трещины, образующиеся в присутствии хлористых и щелочных загрязнений, имеют тот же вид, что и образующиеся в кипящих растворах хлоридов [49]. [c.625]


Смотреть страницы где упоминается термин Ползучесть коррозионная и разрушение: [c.23]    [c.38]    [c.338]    [c.61]    [c.614]    [c.618]    [c.55]    [c.214]    [c.61]    [c.62]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Классификация типов коррозионной ползучести и разрушения

Ползучесть

Разрушение и ползучесть

Разрушение коррозионное



© 2025 chem21.info Реклама на сайте