Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защитные покрытия цинковые

    Повышение связи защитного покрытия с металлической поверхностью достигается также ее грунтованием. При работе покрытия в особо жестких условиях для этой цели применяют фосфатирующие грунты, содержащие, кроме фосфорной кислоты, полимерные смолы и пигменты (например, цинковый крон), которые замедляют электрохимическую коррозию. В результате химического взаимодействия Смолы, фосфорной кислоты и металла на поверхности образуется прочная пленка, обеспечивающая высокую адгезию антикоррозионного покрытия. Кроме своего прямого назначения, эта пленка дополнительно защищает поверхность металла от разрушения. [c.98]


    Защитные покрытия Цинковое электроли-. ическое Электролитический в кислых ваннах Сталь, чугун Сь С, Л и В Детали простой формы детали из листового металла трубы для холодной пресной воды и фасонные части к ним прокладки для устранения вредного влияния контакта между сталью и цветными металлами пружины, плоские вещи и скобяные изделия простой формы [c.62]

    Защитные покрытия в основном подразделяются на две группы — неметаллические и металлические. В свою очередь неметаллические покрытия бывают органическими (лаковые, битумные, пластмассовые, эпоксидные, резиновые и др.) и неорганическими (цементные, асбоцементные, окисные, силикатные, фосфатные, сульфидные и др.). Часто в защитных системах применяют комбинации из органических и неорганических покрытий, например фосфатирование перед нанесением лакокрасочного покрытия для улучшения адгезии органического покрытия и одновременно его защитной способности. Металлические покрытия отличаются от органических тем, что они непроницаемы для коррозионной среды. Однако в них имеются дефекты — поры, царапины, посторонние включения и др., которые создают предпосылку для коррозионного воздействия на основной металл. При наличии пор в коррозионном покрытии коррозионное действие агрессивной среды зависит от электрохимического поведения обоих металлов — основного и металла покрытия. По этому признаку покрытия делятся на катодные и анодные. По отношению к стали, например, цинковое покрытие является анодным, а медное — катодным, т. е. цинковое покрытие оказывает защитное действие по отношению к стали, но при этом само разрушается, а медное покрытие в результате гальванического действия повышает скорость коррозионного разрушения стали. [c.35]

    Защитные покрытия Цинковое электроли- тическое Электролитический в цианистых и щелочных ваннах Сталь, чугун, медь и медные сплавы Сь с, л и в Детали различной формы детали крепежные петли разные талрепы скобы такелажные детали талей карабины накладки шарнирные шпингалеты детали блоков ситовые стеллажи для боезапаса гнезда сальников изделия сварные негромоздкие (после сварки) корпуса и детали приборов пружины цилиндрические инструмент МОН- [c.62]

    Анодные защитные покрытия (цинковые и кадмиевые) могут защищать стальные конструкции от коррозии в воде (водопроводные трубы) и в растворах нейтральных солей или от атмосферной коррозии (кровельное железо). В более агрессивных условиях эффективность цинковых или кадмиевых покрытий невелика вследствие высокой растворимости этих металлов. [c.320]


    Цинковые покрытия во влажной атмосфере окисляются и разрушаются. Для повышения защитных свойств цинковые [c.23]

    Кадмием пользуются для защитного покрытия железа — кадмирование, которое предпочтительнее цинковых покрытий, так как восстановительные потенциалы железа и кадмия близки друг к другу. Большое значение приобрел кадмий в ядерной технике. Из него делают регулирующие стержни для атомных реакторов, так как один из изотопов его с массовым числом ИЗ сильно захватывает нейтроны. [c.421]

    Защитные свойства цинкового покрытия зависят от его толщины и агрессивности окружающей среды. Наиболее толстые цинковые покрытия могут быть получены методами горячего цин-, Кования (20—125 мкм) и напыления (100— 250 мкм). При использовании гальванического метода нанесения цинковых покрытий толщину можно изменять в пределах от 2 до 25 мкм, Тол- [c.80]

    Применение. Так как на цинк при обычных условиях не действуют ни кислород воздуха, ни вода, то основная масса цинка расходуется на защитные покрытия железных листов и стальных изделий. Цинк применяют для получения технически важных сплавов с медью (латуни), алюминием и никелем, а также для производства цинково-угольных гальванических элементов, которые используют в батареях разного назначения. [c.108]

    Применение <1-металлов П группы. Цинк выпускают двух видов цинковая пыль и литой цинк. Цинковая пыль представляет собой конденсат непосредственно из газовой фазы, довольно загрязненный ( d, As). Применяют как восстановитель в химической технологии. Литой цинк выпускают нескольких марок по ГОСТу. Идет на изготовление сплавов латуней, алюминиевых сплавов и сплавов на основе никеля. Основная масса цинка расходуется на защитные покрытия черных металлов от коррозии. Эти покрытия можно наносить различными методами окунанием, металлизацией, диффузионным путем и электролитически. Из цинка изготовляют сухие элементы (см. гл. 9). Сам по себе цинк не является конструкционным материалом из-за хрупкости в определенном интервале температур. [c.393]

    Цинк используется для нанесения защитных покрытий на листовое железо. Латунь представляет собой сплав тди и цинка. Цинк используется для получения водорода в лабораторных условиях. По химическому составу цинковые белила-это оксид цинка 2пО. По химическому составу литопон-это смесь сульфида цинка и сульфата бария. [c.424]

    Защитными покрытиями (лакокрасочными, цинковыми). [c.4]

    Высокие защитные свойства хромового покрытия при толщине слоя 40-45 мкм достигаются за счет низкой водопроницаемости карбидного слоя, а также малой чувствительности к водородному охрупчиванию обезуглероженного слоя, образующегося под карбидной зоной. Цинковые покрытия обладают, также высокой защитной способностью. Важную роль в повышении защитного эффекта цинковых покрытий играет химический состав цинкового слоя, зависящий от состава исходного сырья. [c.89]

    Легирование и обработка металлических покрытий. Защитная способность покрытий зависит от физических и электрохимических параметров. Один из методов повыщения защитной способности покрытий — их легирование различными элементами и обработка составами, способствующими улучшению их физичесю1х параметров и электрохимических характеристик. Результаты исследований показали перспективность использования металлических покрытий в агрессивных средах нефтегазовой промышленности, в том числе в сероводородсодержащих. В сероводородсодержащих средах цинковые покрытия независимо от способа получения как при наличии ионов хлора, так и без них являются анодными по отношению к стали. В последние годы появилось значительное количество публикаций, в которых рассматривается вопрос увеличения защитной способности цинковых покрытий легированием их металлами [c.90]

    Для пескоструйной обработки применяют кварцевый песок, с которым можно работать только на открытых монтажных площадках, из-за строгих санитарных норм. Корундовый песок пригоден для предварительной обработки стального проката, предназначенного для нанесения металлических защитных покрытий, например алюминиевых или цинковых, методом газопламенного напыления. [c.68]

    Защитное действие цинковых покрытий против коррозионно) атмосферы часто улучшают нанесением на них еще лакокрасочны покрытий. [c.76]

    Цинковые покрытия. Около 40 % мировой продукции цинка используется для нанесения защитных покрытий [15]. Цинк наносится на поверхности стальных деталей погружением в го- [c.79]

    Согласно СНиП 11-30—76 Горячее водоснабжение , трубопроводы систем горячего водоснабжения следует проектировать из стальных оцинкованных труб. Выпускаемые в СССР стальные трубы должны иметь толщину цинкового покрытия не менее 30 мкм (ГОСТ 3262—75). Для цинкования водопроводных труб чаще всего применяют горячий способ. В СССР оцинкованные трубы применяют в основном для внутридомовой и в меньшем объеме для внутриквартальной разводки. В Москве замена стальных труб без защитных покрытий оцинкованными трубами привела к увеличению срока службы внутридомовых систем в 1,5 раза и внутриквартальных — в 2 раза. [c.145]


    Прекрасной коррозионной стойкостью цинка в морских атмосферах объясняются и высокие защитные свойства цинковых покрытий на железе. В коррозионных испытаниях в Ки-Уэсте, где условия очень агрессивны, на оцинкованных с двух сторон стальных пластинах (плотность цинкового покрытия от 4,6 до 7,9 г/дм ) после 32-летней экспозиции не наблюдалось ржавчины. Установившаяся скорость коррозии цинкового покрытия была такова, что при его плотности порядка 6 г/дм (это соответствует толщине слоя цинка около 90 мкм) покрытия должно хватить на 79 лет [122]. В местах, где оцинкованные поверхности тюд-вергаются ударному воздействию прибоя, скорости коррозии ципка должны быть выше. [c.166]

    Одни исследователи считают, что защитное действие протекторных грунтовок связано с катодной защитой и дополнительным влиянием продуктов анодного растворения. Другие установили, что в начальный период осуществлялась электрохимическая защита, а со временем начали проявляться защитные свойства благодаря уплотнению пленки нерастворимыми продуктами коррозии цинка во внешних слоях. Было также показано, что в тонких покрытиях (до 10—20 мкм) цинк играет в основном роль протектора, но срок службы такого покрытия ограничивается продолжительностью растворения цинка. В более толстых покрытиях цинковый наполнитель вначале защищает металл за счет протекторного действия, а затем (в течение более длительного времени) — вследствие уплотнения поверхностного слоя покрытия труднорастворимыми продуктами коррозии цинка. Однако это не исключает выявления местного протекторного действия в случае нарушения покрытия и доступа электроли- [c.146]

    Б. Нанесение защитных покрытий путем окраски и лакирования. При монтаже стальных конструкций на открытом воздухе используются преимущественно покрытия, в которых образование пленки происходит либо благодаря физическому испарению растворителя, либо в результате химического отверждения с участием кислорода воздуха. Для грунтовочных слоев чаще всего используют свинцовый сурик, а для покрывных слоев — железную слюдку и цинковый пигмент, либо смесь железной слюдки со свинцовыми белилами и цинковым пигментом. При качественном исполнении такие покрытия обеспечивают надежную длительную защиту. При нанесении алкидного олигомера получают более тонкие слои покрытий (порядка 40 мкм) по сравнению с масляной краской (50 мкм). [c.136]

    Существенный защитный эффект для углеродистой стали, контактирующей с морской водой, достигается за счет термодиффузионного покрытия труб цинком. На рис. 2.1 приведена зависимость скорости коррозии СтЮ и этой стали с термодиффузионным цинковым покрытием в пресной и морской воде от температуры [4]. При толщине железоцинкового слоя 100 мкм потери от коррозии снижаются в 2—12 раз, однако присутствие в коррозионной среде меди в количестве 0,1—0,5 мг/л приводит к быстрому разрушению защитного покрытия. [c.27]

    Кроме стальных труб без защитных покрытий, в системах горячего водоснабжения применяются стальные трубы с металлическими покрытиями (цинковыми, алюминиевыми), стальные трубы с неметаллическими покрытиями, медные трубы, а также трубы из полимерных материалов. [c.145]

    Также используются защитные покрытия (грунтовки), изготовленные на основе хроматов цинка, из-за их улучшенной свариваемости, в то время как грунтовки на основе цинковой пыли обладают невысокой свариваемостью, что ограничивает области их применения. [c.137]

    Почему защитные свойства цинкового покрытия в процессе эксплуатации улучшаются и каков механизм этого явления  [c.293]

    Крепежные детали из углеродистой и легированной сталей могут изготовляться с защитными покрытиями (цинковым и кадмиевым, с хромированием, никелевым, окисным и фосфатным с промасливанием, а из коррозионностойкой стали — для улучшения свинчиваемости — медным покрытием). [c.69]

    Часто молено встретить упоминание о прекрасной коррозионной стойкости в морских условиях старого пудлингового сварочного железа. Некоторые маяки Береговой службы США, построенные из этого материала на побережье Флориды и Мексиканского залива, прослужили уже более 100 лет. Сообщалось, что важную роль в обеспечении столь длительной эксплуатации сооружений сыграло частое обновление защитных покрытий — цинкового и смешаного, состоящего из жира и ваты. Высокая коррозионная стойкость пудлингового железа отмечена в подводной и надводной частях этих конструкций, тогда как металл в зоне брызг подвергался более сильному разрушению и несколько раз за 100 лет все же потребовал ремонта. [c.33]

    Несмотря на то что цинк обладает низкой химической устойчивостью, он широко применяется преимущественно в слабокоррозионных средах. Использование цинка и его сплавов основано на их способности образовывать защитные пленки при взаимодействии с коррозионной средой. Цинк непригоден для изготовления химической аппаратуры, но сравнительно хорошо ведет себя в атмосферных условиях и воде. Детали из цинковых сплавов, полученные литьем под давлением и предназначенные для работы в атмосферных условиях, можно дополнительно защитить путем нанесения гальванического покрытия из меди, никеля и хрома. Цинк применяется в качестве защитного покрытия для стальных изделий и для плакирования арматуры. [c.108]

    Материалы крепежных деталей должны выбираться с одинаковыми коэффициентами линейного расширения соединяемых деталей (фланцев и др.). Применение материалов с различными коэффициентами линейного расширения допускается при обосновании этого соответствующим расчетом или экспериментальными данными. Допускается применять гайки из перлитной стали на болтах (шпильках) из аустенитной стали. Сопрягаемые гайки и болты (шпильки) должны изготовляться из разных по твердости материалов, при этом предпочтительнее более твердыми иметь болты (шпильки). Материал заготовок или готовые крепежные изделия должны быть термообработаны. Крепежные детали из углеродистой и легированной сталей могут изготовляться с защитными покрытиями (цинковым и кадмиевым, с хромированием, с никелевым, окисным и фосфатным покрытием, с промасливанием). Детали из коррозионно-стойкой стали для улучшения свинчива-емости могут иметь медное покрытие. [c.22]

    Кадмий используется для изготовления регулирующих стержней ядерных реакторов, а также в щелочных аккумуляторах. Его можно применять также для защитных покрытий металлов от коррозии. Процесс нанесения покрытия называется кадмированием. Некоторые соединения цинка и кадмия применяются в масляных красках (цинковые белила 2пО, кадмиевая желтая Сс18). Сульфиды цинка и кадмия используются в качестве люминофоров. Все растворимые в воде или в слабых кислотах соединения цинка, и в особенности кадмия и ртути, очень ядовиты. Сильно ядовиты также пары ртути, даже в очень малых концентрациях. [c.55]

    Коррозия резко уменьшает сроки жизни металлических изделий, что приносит огромный вред народному хозяйству. С коррозией ведут непрерывную борьбу, в связи с чем разработаны всевозможные методы защиты. Наиболее применимы защитные металлические (цинковые, хромовые, никелевые, свинцовые, алюминиевые и др.) и неметаллические (азотированные, фосфатированные, силици-рованные, лакокрасочные, пластмассовые и гумированные) покрытия, а также протекторная защита металлов от коррозии и обработка коррозионной среды ингибиторами. [c.161]

    Защитные свойства цинковых покрытий в морской воде достаточно высоки, и оцинкованную сталь щироко используют для защиты от коррозии стальных сооружений, морских нефтепроводов. Эффективно применение цинковых покрытий для защиты от коррозии стальных опор нефтепромысловых сооружений. По данным литературных источников, диффузионное цинкование позволяет повысить коррозионную стойкость стальных опор в зоне переменного смачивания (0,5 м над водой), где стойкость незащищенной стали налменьщая при этом скорость коррозии составляет для оцинкованной стали 5—10 мкм/год, для незащищенной 300 мкм/год. 15-летний опыт эксплуатации труб с диффузионным цинковым покрытием на морских нефтепромыслах Нефтяные камни и о. Артема показал эффективность этого вида защиты. Алюминиевые покрытия позволяют повысить защитные свойства стали по сравнению с цинковыми в хлорсодержащих растворах в 2-3 раза. По данным лаборатории морского флота США, металлизационные алюминиевые покрытия толщиной 120 мкм обеспечивают долговечность защиты в морской воде до 10 лет, в сочетании с однослойным виниловым лаком — до 12 лет. [c.80]

    Хорошие результаты дает применение трубопровода из алюминиево-магние-вых сплавов для транспортировки сернистых нефтей и газов. В ряде случаев (при прокладке во влажных щелочных грунтах) трубопроводы из алюминиевых силавов необходимо изолировать. Однако, изоляции такого трубопровода в 2—3 раза дешевле соответствующего защитного покрытия на стальных трубах, Для строительства газопроводов можно использовать алюмпииево-магни-ево-цинковый сплав марки В-92. Толщина стенки трубы из этого сплава ие больше, чем у стальных, при расчете на давление 50 кГ1см . [c.188]

    Радикальным методом защиты магистральных газопроводов от КР является кажущийся, на первый взгляд, парадоксальным отказ от катодной защиты, однако это может привести к снижению надежности магистральных газопроводов вследствие общей коррозии трубопровода. Кроме того, как это было показано рядом исследователей, в ряде грунтов растрескивание может происходить и без катодной поляризации труб. С точки зрения традиционной карбонатной теории, КР может быть предотвращено с помощью точного контроля величины поляризационного потенциала на всем протяжении трубопровода. Однако на практике этот способ трудно осуществить. Как было показано многочисленными исследованиями, проведенными в нашей стране и за рубежом, различные участки одного и того же подземного со- оружения имеют неодинаковый потенциал [202]. Предложения о повышении потенциала на поверхности трубопровода или использовании прерывистой катодной защиты [142, 217] не дали положительных результатов [136] из-за экранирования токов катодной защиты пузырьками водорода под отслоившейся изоляцией [141, 142, 217]. Рекомендации и патентные решения о подкачке потенциала под отслоившейся изоляцией с помощью локальных цинковых протекторов, являющихся частью комбинированного защитного покрытия, не осуществимы в большинстве случаев из-за образования на поверхности цинка в растворах солей угольной кислоты труднораспю-римых соединений, приводящих к снижению разности потенциалов гальванопары железо - цинк , а в определенных условиях даже к изменению полярности гальванопары [144]. [c.96]

    Судостроение, а позднее и сооружение портов являются одними из старейших областей применения катодной защиты от коррозии (см. раздел 1.3). Для судов и сооружений, располагаемых в прибрежном шельфе, пока применяют преимущественно протекторную защиту, тогда как для портовых сооружений и мостовых перегружателей ввиду потребности в большом защитном токе предпочитают применять станции катодной защиты. Характерные проблемы коррозии для сооружений в прибрежном шельфе встретились уже в середине 1950-х гг. в Мексиканском заливе. Однако скорость коррозии здесь была меньшей по сравнению с наблюдаемой в Северном море (см. табл. 17.2). В допол-нение к этому на передний план все более выступают проблемы усталостного коррозионного растрескивания [13]. В отличие от свайных причалов н судов, на сооружениях в прибрежном шельфе в большинстве случаев не применяют никаких защитных покрытий или используют только временные покрытия. Защита от коррозии обеспечивается по катодной схеме. Значение токоотдачи (в ампер-часах) протекторов из алюминиевых, магниевых и цинковых сплавов согласно данным табл. 7.2—7.4 относятся как 3,1 1,4 1. Напротив, цена этих протекторов (в марках за 1 кг) относится как 1,3 2,8 1, так что удельные затраты в марках ФРГ на 1 А-ч находятся между собой в соотношении 1 2,4 4,7 и наиболее выгодными оказываются алюминиевые протекторы. Многолетние наблюдения за протекторами трех типов в Мексиканском заливе показали, что затраты на них относятся между собой как 1 3,5 2 [13]. Таким образом, магниевые протекторы для использования в прибрежном шельфе неэкономичны. Защита цинковыми протекторами обходится дороже защиты алюминиевыми протекторами. [c.421]

    ТТП9 распространяется на защитные и цинковые покрытия, наносимые газопламенным напылением, металлизацией, распылением на изделия из стали и чугуна. Покрытия предназначены для защиты от коррозии в атмосферах со степенями коррозионной агрессивности 4 и 5 и в водах всех видов. Согласно стандарту ЧСП03 8551 выделены три степени агрессивности воды (табл. 16). [c.126]

    Цинк. Системы катодной защиты с цинковыми протекторами очень эффективны. К достоинствам таких систем относятся простота, доступность анодов с высоким коэффициентом полезного использования снлава и, что особенно важно, способность к саморегуляции. Контур, в котором используется цинковый протектор, должен обладать малым сопротивлением, с тем чтобы через анод мог протекать достаточно сильный ток, необходимый для поляризации. Для цинковых протекторов характерна высокая токоотдача (А-ч на единицу объема). Лакокрасочные и другие защитные покрытия не испытывают воздействия высоких локальных потенциалов в отличие от систем, использующих магниевые протекторы. [c.171]


Смотреть страницы где упоминается термин Защитные покрытия цинковые: [c.338]    [c.209]    [c.338]    [c.42]    [c.290]    [c.402]    [c.148]    [c.60]    [c.64]   
Морская коррозия (1983) -- [ c.165 ]

Коррозия и защита от коррозии (1966) -- [ c.222 , c.223 , c.225 , c.598 , c.606 ]




ПОИСК





Смотрите так же термины и статьи:

Защитные покрытия на основе Цинк и цинковые сплавы

Многослойное защитно-декоративное покрытие изделий из цинкового сплава

Цинковая



© 2024 chem21.info Реклама на сайте