Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная скорости

Рис. 24.9. Коррозионная диаграмма, показывающая, что уменьшение скорости коррозии при нанесении иоверхностных слоев может быть объяснено как увеличением омического сопротивления (а), так и повышением поляризации частных коррозионных реакций (б) Рис. 24.9. <a href="/info/317337">Коррозионная диаграмма</a>, показывающая, что уменьшение <a href="/info/4944">скорости коррозии</a> при нанесении иоверхностных слоев может быть объяснено как увеличением <a href="/info/402677">омического сопротивления</a> (а), так и повышением поляризации частных коррозионных реакций (б)

    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]

Рис. 24..5. Коррозионные диаграммы, иллюстрирующие влияние различных фа1сторов на скорость коррозии Рис. 24..5. <a href="/info/317337">Коррозионные диаграммы</a>, иллюстрирующие влияние различных фа1<a href="/info/867273">сторов</a> на скорость коррозии
    Аэрация и повышение температуры увеличивают скорость коррозии никелевых оплавов. В растворах азотной иислоты никель имеет, сравнительно низкую корроаионную отойкооть. Легирование, никеля медью несколько повышает его коррозионную. стойкость. Сплавы никеля. содержащие 30 % меди ( монеяь-ыеталл никель - основа, [c.32]

    Электрохимическая коррозия встречается чаще других видов коррозионного разрушения и наиболее опасна для металлов. Она может протекать в газовой атмосфере, когда на поверхности металла возможна конденсация влаги (атмосферная коррозия), в почвах (почвенная коррозия), в растворах (жидкостная коррозия). Электрохимическая коррозия подчиняется законам электрохимической кинетики. Скорость ее можно определить на основе закона Фарадея. [c.486]

    Скорость коррозии с кислород-ной деполяризацией поэтому поч-ти не зависит (в известных пре-делах) от природы растворяющегося металла, в частности от величин его равновесного потенциала и анодной поляризации. В этом легко убедиться, если построить коррозионные диаграммы для трех различных металлов М, М.1 и Мз (см. штрих-пунктирные линии на рис. 24.7). На коррозию с кислородной деполяризацией может накладываться коррозия за [c.501]


    При изучении коррозионных свойств нефтепродуктов необходимо рассматривать две разные системы нефтепродукт + металл и нефтепродукт + вода + металл. В первом случае скорость коррозии металлов будет определяться наличием в нефтепродуктах коррозионно-агрессивных веществ и их способностью непосредственно взаимодействовать с металлами (химическая коррозия). Во втором случае корозия металлов в нефтепродуктах должна развиваться преимущественно по электрохимическому механизму. [c.282]

    Хотя лабораторные испытания имеют большое значение при выборе материалов, они не могут полностью имитировать условия, которые имеют место на практике, и хотя на основе этих испытаний может быть сделана предварительная сортировка, окончательный выбор должен быть сделан на основе испытаний в условиях эксплуатации. Это особенно важно, если процессы протекают в средах, содержащих небольшие количества неизвестных коррозионноактивных примесей, влияние которых не может быть оценено с помощью лабораторных проб. Испытания также являются важным методом контроля различных явлений, таких как охрупчивание, выделение водорода, определение коррозионных скоростей и т. д., которые рассматриваются в разделе 10.3. [c.588]

    Исходя из коррозионной способности среды, насыщенный раствор МЭА направляют в трубное, а регенерированный раствор — в межтрубное пространство теплообменника. Аппарат выполняется в соответствии с требованиями ГОСТ 14246—69, категория исполнения Б. При таком материальном оформлении аппарата можно применять трубки трубного пучка диаметром 20 мм, располагая их по квадрату. Для уменьшения коррозии принимают относительно невысокие скорости потока в трубном пространстве (0,5—0,8 м/с), чтобы потери напора были оптимальны даже при четырехходовой но трубному пространству конструкции и сдвоенном расположении аппаратов. При этом длина трубок трубного пучка составляет 6000 мм. Диаметр аппарата выбирают при линейных скоростях потоков в трубном пространстве 0,5—0,8 м/с, а в межтрубном — не ниже 0,3 м/с. Площадь поверхности теплопередачи рассчитывают на основании практических значений коэффициента теплопередачи — для рассмотренных условий 290—350 Вт/(м -°С). [c.89]

    Уравнения, полученные на основе кинетической теории коррозии металлов, позволяют рассчитать потенциал металла в условиях его коррозии, а также скорость коррозионного разрушения по известным токам обмена, коэффициентам переноса и равновесным потенциалам анодной и катодной реакции. [c.500]

    Фактические катодная и анодная плотности тока могут быть различными, если поверхность корродирующего металла разделена на участки, на которых возможно протекание либо только катодной, либо только анодной реакции. Это, однако, не имеет значения при определении общей скорости коррозии, и, следовательно, можно рассматривать поверхность корродирующего металла как эквипотенциальную . Характер совмещенных поляризационных кривых, получаемых по этому методу, показан на рис. 24.6 (сплошные линии). Точка пересечения анодной и катодной поляризационных кривых дает на оси абсцисс скорость коррозии, а на оси ординат — стационарный потенциал. Так как вблизи стационарного потенциала поляризационные 1 данные перестают укладываться в полулогарифмическую зависимость, то скорость коррозии находят обычно по точке пересечения экстраполированных прямоли-не/шых участков поляризационных кривых (пунктирные линии на рис. 24.6). Сопоставление величин скорости коррозии, рассчитанных на основании поляризационных измерений, с полученными непосредсвеино из убыли массы (или в кислых средах по объему выделившегося водорода) для свинца, никеля и железа показало, что оба ряда данных совпадают в пределах ошибок опыта. Это позволило широко использовать метод поляризационных измерений при количественном изучении коррозионных процессов. [c.500]

    Скорость коррозии можно снизить также изменением свойств коррозионной среды. Это достигается или соответствующей обработкой среды, в результате которой уменьшается ее агрессивность. [c.506]

    При внешнем осмотре необходимо обращать особое внимание на коррозионное состояние нижних и верхних поясов, поверхность днища, несущих элементов покрытия кровли. Коррозионные повреждения внутренней поверхности оболочек нефтяных резервуаров возникают неравномерно и с различной скоростью. Коррозия днища нефтяных резервуаров проявляется а виде язв и раковин, расположенных вблизи уторного шва, иногда и в центральной части днища. На первом поясе коррозионные повреждения встречаются в нижней части высотой до 100 мм от уторного шва по всему периметру резервуара. В резервуарах, предназначенных для хранения бензина, преобладающим видом разрушения является коррозия верхних поясов,, кровли и ферм покрытия, поверхность которых постоянно контактирует с кислородом воздуха. При осмотре большое внимание следует уделять местам переменного уровня нефтепродукта.. [c.233]

    Коррозионные процессы отличаются большой сложностью и специфичны для каждого производства. Скорость и глубина коррозии зависят от химической активности и концентрации вещества, вызывающего коррозию, от температуры и давления среды, материала аппарата, наличия или отсутствия влаги, а также веществ, ускоряющих или замедляющих процесс коррозии. [c.31]


    Введем следующие обозначения (рис. 24) з — полная толщина стенки я = з + С С — прибавка на коррозию, величину которой принимают в зависимости от коррозионных свойств среды в пределах 0,1—0,6 см (при наличии данных о скорости коррозии значение С находят, как произведение этой величины на срок 48 [c.48]

    С точки зрения коррозионной стойкости, оптимальное содержание Сг в стали составляет 12-14%. Такой уровень легирования Сг обеспечивае г легкую пассивацию поверхносги во многих агрессивных средах, связанных с производством нефтехимических продуктов. При повышении содержания хрома более 12% коррозионная стойкость практически не увеличивается. Вместе с тем в этом случае имеет место проявление склонности стали к охрупчиванию и снижению прочности в связи с формированием в структуре значительного количества ферритной составляющей. 13-14 %-ные хромистые стали с частичным у-а (М)- превращением относят х мартенситно - феррит-ным. Эти стали известны еще под названием полуферритных. По структуре мартенситно-ферритные стали соответствуют сплавам Ре - Сг. Количество 6- феррита в сталях повышается с увеличением содержания Сг и снижением концентрации углерода. С введением углерода границы существования области у - твердых растворов сдвигаются в сторону более высокого содержания Сг. У 13% - ных хромистых сгалей С < 0,25% термокинетическая диаграмма распада аустенита состоит из двух областей превращения. При температурах выше 600 °С в случае достаточно низкой скорости охлаждения возможно образование ферритной составляющей структуры. Ниже 400 °С при более быстром охлаждении наблюдается бездиффузионное превращение аустенита в мартенсит. Количество образовавшегося мартенсита в ка-асдом из указанных температурных ингервалов зависит, главным образом, от скорости охлаждения и содержания углерода в стали. [c.234]

    Недостатки процесса более низкая скорость экстракции и более высокая коррозионная агрессивность рабочих сред. Большая часть оборудования изготовляется из легированных сталей. Для аппаратуры, работающей в среде ненасыщенной кислоты, используются свинец, монель-металл и графит. [c.726]

    Достоинства процесса — высокая избирательность и использование тепла испарения углеводородов для снятия тепла реакции недостатки — низкая скорость реакции и высокая коррозионная агрессивность среды. [c.726]

    Коррозия металлов иредставляет собой частный случай неравновесных электродных процессов, в то же время ей свойственны некоторые отличительные особенности. Для протекания коррозионного процесса совсем не обязательно наложение внешнего тока, и тем не менее растворение металла в условиях коррозии совершается со скоростями, сравнимыми с теми, какие наблюдаются при растворении металлических анодов в промышленных электролизерах. Так, например, при процессах цинкования анодная плотность тока колеблется в зависимости от состава применяемого электролита в пределах от 50 до 500 а скорость коррозии технического цинка в 1 и. Н2304 эквивалентна плотности тока в 100 А-м , т, е. оказывается величиной того же порядка. Причины, вызывающие такие большие скорости растворения металлов без наложения [c.487]

    В трубное пространство целесообразно подавать теплоносители с меньшим часовым расходом загрязненные теплоносители (высокие скорости, более легко достигаемые в трубах, будут препятствовать отстаиванию и выделению взвешенных частиц) теплоносители под более высоким давлением коррозионно-агрессивные теплоносители теплоносители с очень высокой или, напротив, очень низкой температурой, так как при этом уменьшаются потери тепла в окружающую среду. [c.90]

    Сколд и Ларсон [83] в исследованиях коррозии стали и чугуна в природной воде нашли, что существует линейная зависимость между потенциалом и наложенной катодной и анодной плотностями тока в области их низких значений. Признание важности этих наблюдений было сделано н благодаря работам Стерна и его сотрудников [55, 56], которые использовали термин линейной поляризации для того, чтобы описать линейность т) — -кривой в области потенциала коррозии. Наклон этой линейной зависимости Дф — Д/ или Дф — Ai называется поляризационным сопротивлением. Rn изменяется в омах и имеет синоним линейная поляризация описан Стерном — Гири в методе оценки коррозионной скорости. [c.557]

    Наиболее легко избежать этих трудностей можно или при использовании тех же материалов, из которых изготовлен образец, или даже в некоторых случаях материал контейнера использовать как образец. Клюе использовал небольшие капсулы для определения влияния кислорода на совместимость ниобия и тантала с жидким натрием [227] и калием [228]. Для испытаний системы Nb—К образцы из ниобия размером 2,5X1,4X0,1 см помещали в ниобие-вую капсулу, окруженную другой капсулой, сваренной из нержавеющей стали типа 304. Было показано, что увеличение концентрации добавки KsO заметно увеличивает раст воримость ниобия в жидком калий. Ди Стефано [229] изучал взаимодействие нержавеющей стали типа 316 с ниобием (илн Nb—1 Zr) в Na и NaK путем испытания образцов из ниобия (или Nb—1 Zr) на растяжение в этих жидких металлах в контейнере из нержавеющей стали. Углерод и азот из нержавеющей стали перешли в ниобий, образуя карбиды и нитриды на поверхности образца и таким путем увеличив механическую прочность и уменьшив пластичность образцов. Точный контроль температуры является также очень важным условием (если необходимо получить хорошую воспроизводимость результатов), поскольку растворимость является функцией температуры. Например, коррозионная скорость для системы Си—Bi при (500 5)° С может в несколько раз отличаться от скорости при температуре (500 0,5)"С [230]. [c.585]

    Коррозионная стойкость. В зависимости от скорости коррозии различные стали и сплавы по отношению к определенной среде классифицируются по десятибалльной шкале (ГОСТ 13819—68) как совершенно стойкие, весьма стойкие, стойкие, пониженностойкие, малостойкие и нестойкие. [c.10]

    По теории местных элементов скорость коррозии (или пропорциональный ей электрический ток, возникающий в результате работы локальных гальванических пар) зависит не только от электрохимических свойств электродов З тих пар, но и от омического сопротивления среды, в которой совершается процесс коррозии и которая отделяет анод от катода. Определяюигне скорость коррозии соотиошения удобнее выразить гра( )ически при помощи так называемых коррозионных диаграмм. На коррозионной диаграмме (рис. 24.4) потенциалы анода и катода (или потенциалы анодного и катодного процессов) представлены как функция снлы тока. Когда нет коррозионного процесса и сила тока равна нулю, начальные значения потенциалов на аноде и катоде должны отвечать обратимым потенциалам анодной и катодной ё р реакций в заданных [c.496]

    В противном случае, т. е. если омическое наденне напряжения не равно нулю, скорость коррозии будет не а некоторой меньшей вел1 чиной /кор- В этих условиях омическое падение напряжения Д<В ом численно равно длине отрезка аЬ (см. рис. 24.4). Потенциал анода в процессе коррозии будет от рицательнее потенциала катода на величину Д ом. Таким образом, скорость коррозии является функцией разности обратимых потеН циалов анодной и катодной реакцик, их поляризуемости и омического сопротивления коррозионной с )еды. Влияние каждого из этих факторов на скорость коррозии показано на рис. 24.5 при помощи упрощенных коррозионных диаграмм. Скорость коррозии уменьша ется, если и1)и заданном сопротивлении и неизменной поляризуемо< сти электродов обратимые потенциалы анодной и катодной реак ций сближаются (рис. 24.5, а), т. е изменяется параллельно [c.497]

    НИЙ теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при. количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением массы образца за единицу времени, отнесенным к единице его поверхности, или (в электрических единицах) плотностью тока /. Коррозионные же диаграммы, прив15денныс на рнс. 24.4 и 24.5, построены в координатах потенциал — сила тока, т. е. не позволяют судить о плотности тока, непосредственно характеризующей скорость коррозии. Для ее расчета нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо установить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных— катодные. Это позволит найти общую скорость катодной, и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зиая стационарные потенциалы, можно,, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, пс которой уже затем определить максимально возможную силу тока. Предполагая, что омические потери малы, и зная, как распределяется поверхность между анодными и катодными зонами, вычисляют скорость коррозии. Этот сложный способ, дающий к тому же не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.499]

    С агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью и потери напряжения (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии г равнительно невелики. К Чтодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника кaтoднaя защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы) Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называют жертвенным анодом . [c.504]

    Обработка среды включает в себ5[ все способы, уменьшающие концентрацию ее компонентов, особенно опасных в коррозионном отношении. Так, например, в нейтральных солевых средах и пресной воде одним из самых агрессивных компонентов является кислород. Его удаляют деаэрацией (кипячение, дистилляция, барботаж инертного газа) или связывают при помощи соответствующих реагентов (сульфиты, гидразин и т. п.). Уменьшение концентрации кислорода должно почти линейно снижать предельный ток его восстановления, а следовательно (см. рис. 24.7), и скорость коррозии металла. Агрессивность среды уменьшается также при ее подщелачивании, снижении общего содержания солей и замене более агрессивных ионов менее агрессивными. При противокоррозионной подготовке воды для уменьшения накипеобразования широко применяется ее очистка ионообменными смолами. [c.507]

    Подвесные двигатели для лодок. Большинство современных двигателей для лодок имеют водяную систему охлаждения. Их рабочий режим отличается постоянным, длительным режимом при высокой скорости и максимальной мощности, с мгновенным возрастанием скорости при выходе винта из воды. Постоянная работа с большим расходом топлива позволяет увеличить соотношение масла к топливу до максимума (чаще всего применяется соотношение 1 100). Масло должно отличаться хорошей коррозионной защитой и иметь в своем составе как можно меньше присадок с металлоанионами, повышающими зольность масла, что способствует возникновению калилыюго зажигания. Для поддержания чистоты двигателя применяются высокоэффективные детергенты на основе аминов. Бездымность и биоразлагаемость также являются важнейшими свойствами этих масел. Основные требования к маслам для подвесных двигателей выдвигает [c.123]

    В производстве сульфаноловой кислоты при очередном отжим со скоростью вращения ротора 1000 об/мин произошел разрыв корпуса и корзины центрифуги. Основные причины аварии утончение стенок корзины с 5 до 0,8 мм вследствие коррозии в месте крепления балансировочной пластины, прикрепленной к корзине болтами, пропу1ценными через отверстия корзины и не защшцен-ными от коррозии скалывание гуммировки вследствие неравномерной загрузки мелкодисперсного продукта в сильно коррозионной среде систематические нарушения процесса фугования по времени загрузки и количествам загружаемой суспензии и воды, подаваемой для промывки фугата, что привело к биению и вибрации корзины. [c.161]

    В 011ЯЗИ с увеличением скорости и дальности полета летательных аппаратов возникли новые требования к качеству топлив. Наиболее существенное требование заключается в необходимости увеличения стабильности и уменьшения коррозионной активности топлив при новышенных температурах. [c.83]

    Явления, протекающие на поверхности деталей двигателей и механизмов, как правило, оказывают решающее влияние на обеспечение их надежной и длительной Э1ссплуатации. Так, от способности топлива или масла образовывать на твердой поверхности стабильный смазочный слой и быстро восстанавливать его в случае разрушения зависят скорость износа трущихся деталей и интенсивность их коррозионного поражения. От того, насколько быстро и прочно продукты глубокого окисления масла или специально введенные в него деактиваторы покроют [c.178]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Прибавка на коррозию равна скорости коррозии v (мм/год), умноженной на срок службы т аппарата (обычно 10—12 лет) с = = ит. Скорость коррозии определяют по справочникам или По лабораторным испытаниями. Прибавку на коррозию обычно принимают I—2 мм, что соответствует скорости 0,1—0,2 мм/год. При более интенсивной коррозии стенки аппарата необходимо защищать антикоррозионными покрытиями или заменять конструкционный материал другим, более коррозионно-стойким. Для неответственных частей аппаратов скорость коррозии может быть принята и большей. Если стенка подвергается коррозии с двух сторон, то необходимо ввести две прибавки на коррозию. Для чугунных отливок прибавку на коррозию и возмолшую разностенность отливок принимают равной 5—9 мм. Для аппаратов из двухслойной стали в расчет принимается только слой основного металла, а плакирующий слой может быть учтен только в качестве прибавки на коррозию. Прибавки С2 и Сз учитывают только тогда, когда сумма их превышает 5% от расчетной толщины листа. [c.39]

    При использовании металлических материалов очень важным является вопрос о скорости их коррозии. Кроме природы металла и окислителя и концентрации последнего, иа скорость коррозии могут влиять различные примеси, содержащиеся как в самом металле, так и в коррозионной среде — в атмосфере или а рас пзоре. [c.556]


Смотреть страницы где упоминается термин Коррозионная скорости: [c.475]    [c.6]    [c.7]    [c.28]    [c.71]    [c.57]    [c.65]    [c.102]    [c.157]    [c.487]    [c.491]    [c.497]    [c.502]    [c.245]    [c.353]    [c.90]   
Морская коррозия (1983) -- [ c.22 , c.176 , c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Виды и скорость коррозионных разрушений

Влияние коррозионной среды на скорость роста усталостных трещин

Влияние скорости движения коррозионной среды

Влияние скорости нагружения на стойкость к коррозионному растрескиванию хромоникелевых аустенитных сталей

Влияние температуры и давления среды на скорость протекания коррозионных процессов

Дьячков В.Г. Опыт эксплуатации комбинированных магнитных стресс-коррозионных дефектоскопов сверхвысокого разрешения с регулятором скорости

Испытание на коррозионное растрескивание измерение скорости развития трещин

Кинетика изменения напряжений и скорости коррозии трубопроводов под действием постоянного давления коррозионных сред и продольной силы

Коррозионное скорости деформации

Коррозия скорость и коррозионный потенциал

Методы изучения скорости роста коррозионно-усталостной трещины

Оценка влияния вторичных явлений на скорость коррозии и глубину коррозионных разрушений

Применение положений механики разрушения для описания скорости роста коррозионно-усталостных трещин

Процессы коррозионные скорость

Скорость контактной коррозии коррозионной реакции

Скорость коррозии металла и коррозионный потенциал

Способы снижения скорости коррозионного процесса

Трещина, ветвление скорость развития при коррозионном растрескивании, контролируемая диффузионной кинетикой

Трубки конденсаторные, коррозионная другими металлами неравномерной аэрации скорости движения воды температуры

Учет скоростей и характера течения агрессивных газожидкостных потоков в трубопроводах в целях ослабления или предотвращения коррозионного воздействия

Характерное и весьма важное свойство титана — его практически полная коррозионная устойчивость в морской воде и морской атмофере В этом отношении титан превосходит даже такие коррозионно-устойчивые материалы, как аустенитная нержавеющая сталь, монель-металл, купроникель, приближаясь к устойчивости благородных металлов В табл. 90 приведены данные по скорости коррозии некоторых коррозионно-устойчивых металлических сплавов и среди них листового титана в условиях морской атмосферы, по данным пятилетних испытаний, из которых следует полная устойчивость титана в этих условиях Скорость атмосферной коррозии (на расстоянии 24от моря), по данным пятилетних испытаний



© 2025 chem21.info Реклама на сайте