Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытий защитная способность

    В гальваностегии медные покрытия применяются для защиты стальных изделий от цементации, для повышения электропроводности стали (биметаллические проводники), а также в качестве промежуточного слоя на изделиях из стали, цинка и цинковых и алюминиевых сплавов перед нанесением никелевого, хромового, серебряного и других видов покрытий для лучшего сцепления или повышения защитной способности этих покрытий. Для защиты от коррозии стали и цинковых сплавов в атмосферных условиях медные покрытия небольшой толщины (10—20 мкм) непригодны, так как в порах покрытия разрушение основного металла будет ускоряться за счет образования и действия гальванических элементов. Кроме того, медь легко окисляется на воздухе, особенно при нагревании. [c.396]


    Для целей повышения поверхностноГ) прочности изделий применяют композиционные электрохимические покрытия (КЭП) на основе никеля с включениями частиц второй фазы, роль которой выполняют оксиды, карбиды, нитриды и другие соединения металлов, например КЭП никель-карбид кремния с размером частиц второй фазы 3—10 мкм. Такие покрытия имеют повышенные значения микротвердости, предела прочности, износостойкости, а также защитной способности. [c.39]

    Защитная способность фосфатных покрытий против коррозии повышается при дополнительной обработке маслами, лаками и красками. [c.931]

    Для предотвращения коррозии создают на защищаемой поверхности защитную пленку окислов железа (оксидирование) или фосфатов марганца и железа (фосфатирование). При отсутствии влаги оксидная пленка обладает хорошей химической стабильностью, но во влажной среде ее защитные свойства невысоки. Защитная способность фосфатных покрытий значительно выше, чем у оксидных, однако фосфатные пленки довольно хрупкие. При контакте с маслами фосфатные покрытия хорошо ими пропитываются и защитные свойства покрытий повышаются. [c.99]

    Особенно часто применяют фосфатирование в качестве промежуточного слоя, обеспечивающего повышенную адгезию органического покрытия. Защитная способность органического покрытия в этом случае возрастает в несколько раз. [c.67]

    Электрические методы определения защитной способности лакокрасочных покрытий. Защитная способность покрытий ха-рактеризуется некоторыми электрическими свойствами и их изменением во времени под воздействием коррозионной среды. К таким свойствам относятся пробивное напряжение, сопротивление и емкость. [c.195]

    ПОВЫШЕНИЕ ЗАЩИТНОЙ СПОСОБНОСТИ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ [c.90]

    Наиболее эффективными являются многослойные (2—3 слоя) никелевые покрытия, защитная способность которых намного выше однослойных благодаря электрохимической защите внутри никелевых слоев и механической защите, обусловленной различной структурой слоев никеля. Распространены двух- и трехслойные покрытия матовым и блестящим никелем, в которых сочетаются первый слой, не содержащий серы, и последующие слои с включением различного количества серы, которые получают из электролитов с серосодержащими выравнивающими органическими добавками. Так как потенциал никеля, содержащего серу, имеет более отрицательное значение, чем потенциал никеля без включения серы, второй слой электрохимически (анодно) защищает от коррозии первый слой никеля и, таким образом, обес- [c.160]


    Способами повышения защитной способности металлических покрытий является хроматная и хроматно-фосфатная пассивация. Пассивацию используют для повышения защитной способности практически всех металлов и покрытий (2п, Сс1, А1, №, Ре). [c.97]

    В ряде случаев для повышения защитного действия комбинируют неорганическое и органическое покрытия. Особенно часто применяют фосфатирование в качестве промежуточного слоя, обеспечивающего повышенную адгезию органического покрытия. Защитная способность органического покрытия в этом случае возрастает в несколько раз. [c.117]

    Наиболее эффективными являются многослойные 2—3 слоя) никелевые покрытия, защитная способность которых намного выше однослойных. Характерны двух-и трехслойные покрытия никелем, в которых сочетаются первый слой, не содержащий серы, и последующие слои с включением различного количества серы. Так как потенциал никеля, содержащего серу, имеет более отрицательное значение, чем у никеля без включения серы, то второй слой электрохимически (анодно) защищает от коррозии первый слой никеля и таким образом обеспечивается более высокая защитная способность покрытия в целом. [c.181]

    Легирование и обработка металлических покрытий. Защитная способность покрытий зависит от физических и электрохимических параметров. Один из методов повыщения защитной способности покрытий — их легирование различными элементами и обработка составами, способствующими улучшению их физичесю1х параметров и электрохимических характеристик. Результаты исследований показали перспективность использования металлических покрытий в агрессивных средах нефтегазовой промышленности, в том числе в сероводородсодержащих. В сероводородсодержащих средах цинковые покрытия независимо от способа получения как при наличии ионов хлора, так и без них являются анодными по отношению к стали. В последние годы появилось значительное количество публикаций, в которых рассматривается вопрос увеличения защитной способности цинковых покрытий легированием их металлами [c.90]

    Потенциал металла покрытия измеряют на цельном электроде, считая, что диффузионные и кинетические ограничения, а также площадь электрода из-за пор практически не меняются. Затем строят поляризационную кривую для иокрытия, на нее наносят потенциал системы основа — металлическое покрытие и по нему определяют плотность тока коррозионного элемента. На рис. П.10 приведены коррозионные диаграммы двухэлектродных систем. Из приведенных графиков следует, что в электрохимическом отношении при одинаковых толщинах покрытий наиболее активна система железо-медь, а наименее активна железо—хром, чем объясняются высокие во многих случаях защитные свойства хромовых покрытий. Таким образом, возможность определения коррозионного тока, возникающего между основой и покрытием, позволяет оценить защитную способность покрытия и является объективным показателем пористости покрытия. [c.75]

    Рассмотренные методы нанесения металлических покрытий на сталь, данные о свойствах этих покрытий и их защитной способности в условиях коррозионноактивных сред свидетельствуют о перспективности этого метода, обеспечивающего высокую степень защиты не только против общей коррозии, но и в условиях таких опасных видов разрушения оборудования, как коррозионное растрескивание и наводороживание, повышающего прочность стали в условиях циклических и динамических силовых воздействий и позволяющего экономить легированные стали и цветные металлы. [c.88]

    Оловянирование образцов проводят в электролите № 2 при оптимальных условиях электролиза (200—300 А/м ) на толщину слоя 2 и 10 мкм. Пористость определяют по методике, изложенной в приложении У.4 защитную способность — в приложении V. 5. Опыт повторяют, получив блестящее покрытие оловом нз электролита № 4 или № 5 при плотности тока 600 А/м (приняв ВТ равным 65 %). [c.30]

    Защитная способность антикоррозийных смазок характеризуется рядом констант. К ним относятся испытание на коррозию пластинок из стали, меди, погруженных ли покрытых слоем смазки, при повышенных температурах,. а также при конденсации на пластинке паров воды. Косвенно защитная способность характеризуется определением сохранности слоя смазки на поверхности металла при выдерживании в условиях повышенных температур. [c.248]

    Образцы покрытий, полученных из всех электролитов, подвергают пассивации путем погружения в один из растворов, приведенных выше. После промывки образцы сушат и сравнивают с образцами, не подвергнутыми пассивации. Защитную способность хроматных пленок оценивают по методике, приведенной в приложении V. 5. [c.25]


    Опыт 5. Выяснить зависимость пористости осадка и защитной способности от толщины покрытия. [c.30]

    Опыт 5. Изучить влияние толщины на пористость и защитную способность медного покрытия. [c.37]

    Пористость и защитную способность покрытий определяют по методике, указанной в приложениях .4 и V. 5. [c.37]

    Как и в случае органических покрытий на антикоррозионные свойства и защитную способность полиорганосилоксановых покрытий, существенное влияние оказывает подготовка поверхности перед нанесением покрытия. Защитная способность полиорганосилок-сановой алюминиевой эмалц по фосфатированной стали в 3%-ном [c.12]

    V. 5. Методы контроля защитной способности металлических и неметаллических покрытий [c.276]

    Ориентировка кристаллов и текстура осадка существенно влияют на защитную способность покрытий. Скорость растворения гексагонального плотно упакованного аСО в 1 н. Н2 804 для разных кристаллитов возрастает в последовательности (0,001) < (1011) < (1120) < (1010), а ддя цинка (0,001) < (1010). [c.56]

    Структура покрытий, переходных зон, окисных пленок, формирующихся в процессе нанесения, оказывает существенное влияние на их защитный эффект при наводороживании. Большой интерес представляет изучение защитной способности покрытий, полученных диффузионным насыщением поверхности стали порошковыми материалами, нанесенны- [c.63]

    Эффективность защитной способности покрытий в наводороживающих средах, несомненно, зависит от их полярности и пористости. [c.70]

    Высокие защитные свойства хромового покрытия при толщине слоя 40-45 мкм достигаются за счет низкой водопроницаемости карбидного слоя, а также малой чувствительности к водородному охрупчиванию обезуглероженного слоя, образующегося под карбидной зоной. Цинковые покрытия обладают, также высокой защитной способностью. Важную роль в повышении защитного эффекта цинковых покрытий играет химический состав цинкового слоя, зависящий от состава исходного сырья. [c.89]

    Потенциал поверхности алюминиевого вакуумного покрытия через сутки испытаний близок к потенциалу стали. Характерная особенность поведения пористого вакуумного покрытия — локализация коррозионного процесса в порах с образованием труднорастворимых продуктов коррозии байерита и бемита, которые экранируют пору. Вследствие уменьшения pH раствора на дне поры создаются условия для анодного раст]ворения железа, и на поверхности алюминия появляются точки ржавчины. Для алюминиевьк беспористых покрытий защитная способность более значительна. [c.82]

    Защитная способность хромового локрытия определяется тем, что по отношению к обычно защищаемому металлу — стали — он является катодом при довольно значительной разности потенциалов этой пары (например, в 3%-ном растворе КаС1 около 0,5 В). Как и при других катодных покрытиях, защитная способность электролитического хрома определяется его пористостью, которая зависит от состава электролита, режима хромирования и толщины покрытия. Пористость хромового покрытия может быть полностью устранена подбором условий хромирования. Беспористое покрытие хорошо защищает от коррозии. [c.41]

    К конструкционному материалу для нефтегазодобывающего оборудования предъявляется широкий комплекс требований наряду с механической прочностью необходимы малая масса, высокая стойкость против коррозии, особенно против специфических видов коррозионного разрушения, стабильность свойств при перепадах температур, стойкость против парафиноотложения и др. Получить материал с оптимальным сочетанием свойств не всегда возможно. Поэтому весьма перспективно нанесение покрытий на стальную основу. При этом достигается экономия дефицитных и дорогостоящих материалов и возможность использования свойств обоих компонентов — высокой защитной способности покрытия и механических свойств основы. Для плакирующего слоя или покрытия могут быть использованы. высоколегированные стали или дефицитные и дорогостояшле металлы (титан, никель и др.), имеющие повышенную коррозионную стойкость. Ввиду того, что толщина плакирующего слоя или защитного покрытия [c.73]

    Однако степень анодного и катодного контроля достаточна для обеспечения высокой коррозионной стойкости. Испытания опытных алюминированных насосных штанг из сталей 40У и 20ХН проводили на одной из скважин Ромадановского месторождения. Продукция этой скважины была обводнена на 20 % и содержала значительное количество серусодержащих соединений, в том числе и сероводорода. Результаты этих испытаний позволили сделать вывод о высокой защитной способности алюминиевого покрытия насосных штанг. [c.126]

    Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве дедст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванически,е ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестянщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51. [c.234]

    Аноднооксидное покрытие на алюминии. После анодного окисления н промывки холодной водой образец просушивают фильтровальной бумагой. Для определения защитной способности оксидной пленки используют раствор состава бихромат калия — 3 г, соляная кислота (плотность 1,19 г/см ) — 25 см , вода — 75 см , [c.276]

    ГОСТ 9.054 - 75. ЕСКЗС. Консервационные масла, смазки н нефтяные ингибированные тонкопленочнне покрытия. Методы ускорения испьгганий защитной способности.  [c.143]

    Борисов Б.И. Защитная способность изо.пяционных покрытий подземных трубопроводов. -М. Недра, 1987. 26 с. [c.150]

    Объяснить только экранирующим действием высокую защитную способность мега. шических покрытии не всегда во .можно, но когда речь идет о тонких металлических слоях. Наряд> с экранирующим эффектом существенное влияние оказывает на наводороживаш. е электрохимическое поведение материалов в наводороживающих сре- [c.69]

    Малорастворимые продукты коррозии уменьшают размер пор, что снижает роль пористости покрытия в наводороживании металла основы. Окисные пленки, образующиеся на основном металле, также оказьшают влияние на стойкость покрытий в наводороживающих средах. Дополнительная обработка стали с покрытием в пассивирующих растворах повышает их защитную способность. [c.72]

    Специфика поведения алюминиевых покрытий в хлорсодержащих средах связана с наличием пассивной пленки, возможностью открытого контакта алюминия с железом в порах покрытия и разрушающим действием ионов хлора на оксидную пленку. По отношению к незащищенной стали независимо от способа нанесения алюминиевые покрытия служат анодом в среде 3 % Ного раствора Na l. Защитная способность алюминиевых покрытий в хлорсодержащих средах существенно зависит от способа их нанесения. [c.80]

    Анодная поляризация алюминиевых вакуумных покрытий в 3 %-ном Na l незначительна, что указывает на сравнительно легкий процесс анодного растворения в присутствии галогенов. Покрытия, полученные из порошковых материалов, имеют плотные и толстые окисные пленки, вызывающие более значительную анодную поляризацию. Анодная кривая обратного хода для всех исследуемых покрытий смещается в отрицательную сторону, причем для электрофоретического покрытия на 40-50 мВ, вакуумного и электростатического - на 60 - 70 мВ. Эти данные свидетельствуют о различной защитной способности окисных пленок, имеющихся на алюминиевых покрытиях. [c.81]

    Стационарный потенциал цинкового покрытия при легировании его титаном смещается в отрицательную область на 70—75 мВ, при этом цинковое покрытие продолжает оставаться анодом по отношению к стали. При введении титана в цинковое покрытие облегчается протекание катодного процесса, и катодная поляризуемость снижается почти в 3 раза анодное поведение 2п—Сс1-покрытия практически не изменяется. Следовательно, легирование титаном кадмиевых покрытий благоприятно сказывается на повьияении их защитной способности в наводороживающих средах, а легирование цинковых покрытий титаном приводит к противоположному эффекту. [c.93]

    В сероводородсодержащих средах, в том числе в присутствии СГ, никелевые покрытия имеют электрохимические характеристики, обеспечивающие высокие защитные свойства значительную область анодной пассивности от О до +900 мВ и малые величины тока в пассивном состоянии (г пп = 20 мкА/см ). При наложении растягивающих напряжений, равных 0,9 Оо,2, защитная способность никелевых покрытий остается достаточно высокой, хотя пассивная область сдвигается от О до +700 мВ и пробой пассивной пленки наступает при потенциале +700 мВ, в то время как без, наложения растягивающих нагрузок при 900 мВ. Дальнейшее повышение напряжения приводит к отслаиванию покрытий на отдельных участках поверхнс.)Сти. Так1.)е гюнедение никелевых покрыгии (.вязано и высоким уровнем внутренних напряжений и их низкой пластичностью. [c.95]


Смотреть страницы где упоминается термин Покрытий защитная способность: [c.93]    [c.73]    [c.47]    [c.276]    [c.143]    [c.56]    [c.87]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.185 ]




ПОИСК





Смотрите так же термины и статьи:

Защитная способность

Защитная способность и долговечность лакокрасочных покрытий

Защитная способность и долговечность металлических покрытий

Защитная способность покрытий. Принципы контроля и управления качеством защитных покрытий

МЕРОПРИЯТИЯ ПО ПОВЫШЕНИЮ ЗАЩИТНОЙ СПОСОБНОСТИ ЛЕНТОЧНЫХ ПОКРЫТИИ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ

Напреенко С. П., Опарин А. Н. Оценка защитной способности органических покрытий методом электрохимического компарирования

Повышение защитной способности металлических покрытий

Покрытия защитные защитная способность

Покрытия защитные защитная способность

Полуэмпирическая теория процесса изменения защитной способности покрытий трубопроводов в грунтовых средах

Роль адгезии в защитной способности полимерных покрытий

Структура, химическая стойкость и защитная способность хромовых покрытий

Химическая стойкость и защитная способность хромовых покрытий



© 2025 chem21.info Реклама на сайте