Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фильтровальная ткань

    Установка депарафинизации обслуживается закрытой дыхательной системой инертного газа. Все приемники на установке депарафинизации, где находится растворитель, а также газовое пространство фильтров заполнены инертным газом. Это предотвращает образование взрывоопасной смеси растворителя с воздухом и сокращает потери растворителя. Инертный газ служит также для подсушки и отдувки твердого осадка (лепешки) от фильтровальной ткани в вакуум-фильтрах непрерывного действия барабанного типа. [c.80]


Таблица 3.9 Эксплуатационные свойства фильтровальных тканей Таблица 3.9 <a href="/info/377116">Эксплуатационные свойства</a> фильтровальных тканей
    Центрифуги одного и того ке типа могут применяться в качестве отстойных и фильтрующих. На рис. 18 представлена трехколонная фильтрующая центрифуга с верхней ручной выгрузкой. Цилиндрический барабан 1 имеет дырчатую обечайку, покрытую изнутри сеткой и фильтровальной тканью. К верхней части барабана крепится бортовое кольцо, днище барабана сплошное. Барабан закрыт кожухом, через крышку которого проходит труба для ввода суспензии. [c.40]

    Далее излагается примерный порядок выбора фильтровальных тканей, который отчасти можно использовать при выборе нетканых материалов. [c.377]

    Свойства двойного электрического слоя на поверхности пор и частиц влияют на задерживание твердых частиц суспензии в порах фильтровальной перегородки. Установлена зависимость дзета-потенциала от pH суспензии, содержащей частицы руды, для фильтровальных тканей из капрона и лавсана, а также для [c.109]

    В адсорбционном процессе большое значение имеют размер частиц адсорбента (дисперсность), пористость и удельная поверхность. С увеличением дисперсности частиц возрастает поверхность контакта адсорбента с сырьем, что повышает эффективность про цесса. Однако слишком мелкие частицы адсорбента или замедляют фильтрование, или легко проходят через фильтровальную ткань и трудно отделяются от очищенного масла. Для каждого вида сырья и способа контактирования существует оптимальный размер частиц адсорбента. [c.274]

    Для улучшения показателей процесса депарафинизации и обезмасливания нецелесообразно применять малопроизводительные, сложные и дорогие двухступенчатые варианты, а необходимо улучшать качество сырья, в первую очередь его фильтруемость путем повышения четкости ректификации на АВТ, улучшения очистки, использования рациональных режимов его охлаждения и кристаллизации, добавки присадок, улучшающих его кристаллическую структуру, и др., а также общим улучшением работы фильтров, повышением качества фильтровальной ткани и улучшением промывки лепешки на фильтрах. [c.194]


    Весьма важное значение при процессе обезмасливания имеют техническое состояние фильтров и качество осуществляемых на фильтрах операций, особенно промывки лепешки. При неудовлетворительной промывке лепешки, например, вследствие неравномерного распределения растворителя на ее поверхности полнота обезмасливания резко снижается. Она ухудшается также и при плохом состоянии фильтровальной ткани, неполадках в работе вакуумных насосов, недостаточной глубине вакуума в секторе промывки фильтра и других причинах. По данным некоторых зарубежных источников [25, 26], для достижения высокой глубины обезмасливания парафина необходимо применять очень хорошо обезвоженный растворитель и тщательно следить за отсутствием в нем даже самых незначительных количеств масла, которое может попасть в него при регенерации. [c.197]

    Осадок на вакуумном фильтре промывается растворителем, предварительно охлажденным в аммиачном холодильнике 17. Затем осадок подсушивается, отдувается инертным газом от фильтровальной ткани, снимается ножом, разбавляется растворителем и выводится шнеком в приемник 8. Из приемника 8 насосом 9 он подается в приемник 10, откуда суспензия самотеком поступает на вакуумные фильтры 15 ступени II. [c.86]

    После снятия осадка фильтровальную ткань продувают воздухом и промывают водой (зона регенерации ткани У). [c.81]

    При прохождении запыленного газа через фильтровальную ткань твердые частицы постепенно осаждаются в порах между волокнами, сцепляются друг с другом и образуют пористую перегородку, обеспечивающую совместно с тканью хорошую степень очистки газа. При образовании пылевого слоя определенной толщины, когда резко увеличивается гидравлическое сопротивление аппарата (до 500—2000 Па), производят удаление пыли встряхиванием или обратной продувкой рукавов. [c.77]

    Фильтровальные ткани нз натуральных волокон (сукно, диагональ, бельтинг) имеют малую механическую прочность и низкую стойкость к агрессивным средам. Синтетические ткани (лавсан, полипропилен и др.) превосходят натуральные по химической стойкости и механической прочности. Регенерация их (очистка от осадка) осуществляется проще и качественнее — промывкой струей воды нз шланга. Какой показатель — долговечность или ремонтопригодность — повышается ири замене натуральных тканей на синтетические  [c.74]

    Центробежный фильтр. В простом виде данный фильтр представляет собой вертикальный патрон, состоящий из перфорированного цилиндра, дренажной сетки и фильтровальной ткани и вращающийся в сосуде с разделяемой суопензией [42]. Здесь разность давлений, создаваемая источником вакуума, присоединенного к зоне внутри патрона, натравлена противоположно центробежной силе, обусловленной вращением патрона. При достижении первой критической скорости вращения последнего образование осадка на поверхности ткани прекращается, но фильтрат [c.54]

    Описана унифицированная установка, работающая под вакуумом и включающая фильтровальную воронку с поверхностью фильтрования 0,005 и 0,01 м воронка имеет съемную дренажную перфорированную решетку, на которой размещается фильтровальная ткань [164]. Указано, что суспензия помещается в воронку над перегородкой или воронка погружается в суспензию в обратном положении, причем суспензия находится под перегородкой. [c.160]

    Лабораторный фильтр, показанный в разобранном виде на рнс. Х-5, предназначен для исследования процесса разделения суспензии на вращающемся барабанном вакуум-фильтре со слоем вспомогательного вещества при условии, что тонкая внешняя часть этого слоя непрерывно срезается ножом, который медленно приближается к поверхности барабана [374]. Лабораторный фильтр состоит из трех частей опорной перегородки площадью 0,01 м с желобками, обеспечивающими удаление фильтрата через центральное отверстие поддерживающего кольца с внутренней резьбой, позволяющей навинчивать его на цилиндрическую поверхность опорной перегородки, и внешней резьбой с шагом 1,25 мм (это кольцо имеет узкий бортик, который прижимает фильтровальную ткань или сетку к опорной перегородке при помощи прокладки) внешнего кольца с нарезкой на относительно небольшой части внутренней поверхности, что дает возможность навинчивать его на поддерживающее кольцо. Линейное перемещение внешнего кольца при вращении градуировано по 0,025 мм. Полный оборот его на поддерживающем кольце соответствует линейному перемещению 1,25 мм. [c.350]

    Перфорированные листы и сетки используют для разделения суспензий, содержащих грубодисперсные твердые частицы, а также в качестве опорных перегородок для фильтровальных тканей и бумаги. Так, в процессе разделения суспензий некоторых органических продуктов при давлении- в несколько атмосфер и температуре 90 °С в плиточно-рамных фильтрпрессах применяют алюминиевые листы толщиной около 1 мм с 12—15 отверстиями диаметром 1,4 мм на 1 см , покрытые фильтровальной бумагой. Можно отметить использование сетки из нержавеющей стали в качестве опорной перегородки для вспомогательного вещества (диатомита) в процессе очистки расплавленной серы фильтрованием. [c.364]


    Для ориентации при выборе одной из фильтровальных тканей применительно к осуществлению данного процесса разделения суспензии необходимо иметь сведения о назначении фильтрования (получение осадка, фильтрата или того и другого одновременно), а также по возможности полные данные о свойствах твердых частиц (размер, форма, плотность), жидкости (кислая, щелочная, нейтральная температура, вязкость, плотность), суспензии (соотнощение твердой и жидкой фаз, агрегация частиц, вязкость), осадка (удельное сопротивление, сжимаемость кристаллический, рассыпчатый, пластичный, липкий, слизистый). Кроме того, следует иметь представление о производительности, что поможет определить движущую силу процесса (сила тяжести, вакуум, давление). [c.377]

    При выборе ткани с определенными механическими свойствами следует учитывать движущую силу процесса и тип фильтра, на котором будет разделяться суспензия. Конструкция фильтра может определить одну (или более) из следующих характеристик фильтровальной ткани а) прочность на растяжение б) устойчивость при изгибании в) устойчивость к истиранию г) способность принимать форму опорной перегородки фильтра. [c.377]

    Сделанный таким образом выбор фильтровальной ткани подтверждается или корректируется на основании лабораторных испытаний с использованием, например, однолистового фильтра. Испытания на этом фильтре не дают сведений о прогрессирующем закупоривании пор и изнашивании ткани. Однако они дают указания о чистоте фильтрата, производительности и окончательной влажности осадка. Однолистовой фильтр представляет собой плоскую полую пластину, одна из сторон которой обтянута фильтровальной тканью. Этот фильтр присоединяют к источнику вакуума и погружают в суспензию (фильтрование), поддерживают в воздухе (продувка) или орошают диспергированной жидкостью (промывка). При этом ткань фильтра обращена вниз или вверх или расположена вертикально в зависимости от того, какой фильтр моделируется в данном случае. [c.378]

    Если осадок не снимается удовлетворительно ни одним из указанных способов, целесообразно увеличить продолжительность продувки или вакуум, или то и другое одновременно. Если осадок и после этого снимается плохо, следует испытать другую фильтровальную ткань. Когда осадок снимается удовлетворительно, надлежит сделать опыт при более коротком времени фильтрования и пониженном или повыщенном вакууме. При этом необходимо иметь в виду, что сжимаемые осадки иногда закупоривают поры быстрее при повышенном вакууме. [c.379]

    На основании обследования ряда производств неорганических и органических продуктов, в частности красителей и медицинских препаратов, даны [430] рекомендации по замене хлопчатобумажных фильтровальных тканей на ткани из синтетических волокон. [c.380]

    Рассмотрен выбор фильтровальных тканей с учетом давления жидкости, скорости фильтрата, физических и механических свойств осадка [431]. Отмечена важность нахождения действительных причин, влияющих на продолжительность службы тканей. Указано, что причиной ухудшения фильтрационных свойств тканей в процессе эксплуатации может быть не только механическое изнашивание, но и взаимодействие частиц осадка с тканью. [c.380]

    Основными факторами, решающими успех фильтрации и определяющими производительность фильтра, являются характер и толщина осадка. Главную роль в процессе фильтрации обычно играет не сопротивление фильтровальной ткани или другой перегородки, которая представляет только основу фильтрующего слоя, а соиро-тивление самого осадка, который является основным фильтрующим [c.30]

    Отмечено, что любой фильтр по существу представляет собой опорную конструкцию для размещения фильтровальной перегородки, которая в основном определяет процесс разделения суспензии в соответствии с этим рациональный выбор перегородки является ответственной операцией [433]. Рассмотрено влияние конструкции и способа действия фильтра на выбор перегородки применительно к барабанным, дисковым, тарельчатым, карусельным и ленточным вакуум-фильтрам, а также листовым и патронным фильтрам под давлением. Для вакуум-фильтров даны сведения о способах укрепления ткани на опорной поверхности, подкладочных тканях, дренажных каналах, системах удаления осадка с ткани, способах промывки ткани, уплотнении зон контакта ткани с опорной поверхностью. Для листовых и патронных фильтров приведены характеристики перегородок, а также указаны способы удаления с них осадка и замены их на новые. Отмечена возможность противоречивых требований к перегородкам так, для барабанных вакуум-фильтров ткань должна быть достаточно прочной, чтобы образовывать мостики над щелями в опорной поверхности, но достаточно гибкой, чтобы создавать уплотнение. В связи с возрастанием размера фильтров и интенсификации их работы (повышение разности давлений) обращено внимание на необходимость увеличения размеров и улучшения качества фильтровальных тканей. [c.380]

    Для непрерывной фильтрации применяется таки е ленточный вакуум-фильтр (рис. 16), фильтрующая поверхность которого образуется бесконечной резиновой лентой с натянутой на не11 фильтровальной тканью. [c.35]

    В заключение сошлемся на статьи общего характера. Приведены рекомендации [437] по использованию перегородок в среде агрессивных веществ (неорганические и органические кислоты, основания, соли, окислители, органические растворители) представлены данные [423] о структуре и свойствах фильтровальных тканей, а также о нетканых материалах рассмотрены [438] пористость и проницаемость керамических, металлокерамических, пластмассовых и природных пористых материалов даны указания [439] о выборе фильтровальных тканей в зависимости от назначения и условий фильтрования, а также свойств суспензии и осадка с учетом структуры ткани сделан обзор литературы [440], в частности по проницаемости и задерживающей способности некоторых фильтровальных перегородок дана [441] классификация натуральных и синтетических волокон и рассмотрены принципы выбора фильтровальных тканей помещена [442] классификация разнообразных фильтровальных перегородок, а также приведены их характеристики и методы исследования рассмотрены [443] классификация и выбор фильтровальных тканей. [c.382]

    Центрифуга фильтрующего типа состоит из кожу- ха и вращающегося перфорированного цилиндрического сосуда ( корзины ), в который вставляется мешок из плотной фильтровальной ткани. Разделяемая суспензия может подаваться на центрифугирование периодически или непрерывно. Фильтрование происходит под действием центробежной силы, которая пропорциональна радиусу корзины и квадрату частоты вращения. Движущая сила процесса на применяемых в лаборатории центрифугах может в несколько сотен (а для суперцентрифуг — даже в несколько тысяч) раз превышать таковую для обычного фильтрования. Это обстоятельство необходимо учитывать при выборе фильтрующей ткани. Чтобы осадки не спрессовывались в плотную массу, которая с трудом пропускает жидкость, не рекомендуется сразу вводить центрифугу на полную мощность. После того как стечет весь фильтрат, число оборотов можно увеличить. Жидкость удаляется из осадка настолько полно, что, он становится почти сухим. [c.110]

    Вакуумный фильтр представляет собой стальной барабан, вргщающийся на подшипниках в герметично закрытом кожухе. На наружной поверхности барабана натянута фильтровальная ткань, [c.261]

    При сжатых рамах суспензия под давлением поступает в пространство над фильтровальной.тканью. Жидкая фаза проходит фильтровальную ткань, твердая фаза задерживается, образуя слой осадка. При достижении нужной толщины слоя осадка подачу суспензии прекращают и оставшуюся в полости рамы суспензию вытесняют резиновой диафрагмой, подавая к ней под давлением воду. В случае необходимости осадок промывают и затем прессуют диафрагмой или продувают сжатым газом. После этого плиты разжимаются, включается механизм передвил<ения ткани и осадок удаляется. [c.279]

    Основная деталь центрифуги — ротор. Его изготовляют сварным. На рис. 180 показан ротор вертикальной центрифуги. Он состоит из ступицы, днища, перфорированной обечайки и крышки. Диаметр отверстий 4—8 мм, толщина обечайки обычно не превышает 8 мм. Отверстия располагают в шахматном порядке. На барабан 1 накладывают плетеную сетку (подкладное сито 2), изготовляемую из проволоки диаметром 1 — 1,25 мм на сито 2 — фильтровальную ткань 3 (рис. 181). Сетку и ткань прижимают к барабану бандажами. При изготовлении роторов в антикоррозионном иснолнении все детали изготовляют из нержавеющей стали, а [c.188]

    Учитывая неагрессивность газов, принимаем по табл. 3.9 фильтровальную ткань (лавсан с начесом), допускающую максимальную температуру газа /д = 130 °С. [c.81]

    Из предыдущего (с. 64) ясно, что расхождение между результатами расчета будет тем заметнее, чем больше отличаются показатели сжимаемости перегородки и осадка и чем большая доля общего сопротивления приходится на перегородку. Исходя из этого примем, что показатель сжимаемости осадка 5 = 0,9 (эта величина для перегородки равна 0), а сопротивление перегородки в конце процесса составляет 0,1 от величины общего сопротивления. Поскольку при постоянной разности давлений скорость фильтрования обратно пропорциональна общему сопротивлению, нетрудно установить, что скорость фильтрования в конце процесса должна составлять 0,1 от величины скорости в начале процесса, когда на перегородке еще нет осадка. Отсюда Ц/=0,1 о/ о = 0,1. Близкие к этим условия могут возникнуть при разделении на барабанном фильтре со сходящей фильтровальной тканью суспензии, дающей сильносжимаемый осадок, причем толщина этого осадка невелика (например, 2 мм). [c.86]

    Была исследована [118] взаимозависимость между удельным объемным сопротивлением осадка Го и сопротивлением ткани Йф.п при наличии в ее порах твердых частиц. Установлено, что для сжимаемых осадков отношение R .njro при изменении разности давлений остается постоянным. Отмечено, что при правильной организации процесса фильтрования это отношение не должно превышать 10 м, т. е. сопротивление фильтровальной ткани не должно быть больше сопротивления слоя осадка толщиной 1 мм. [c.109]

    При решении практических задач фильтрования (в частности, на вращающихся непрерывнодействующих фильтрах различной конструкции) иногда нет необходимости определять отношение объема осадка к объему фильтрата и удельное сопротивление осадка. Достаточно, например, установить при данных условиях продолжительность фильтрования, необходимую для получения осадка заданной толщины. Для этого пользуются различными лабораторными листовыми фильтрами [1, с. 68], на которых можно найти также и другие величины, характеризующие работу вращающихся непрерывнодействующих фильтров — скорость промывной жидкости, требуемое количество промывной жидкости, продолжительность продувки осадка воздухом. Кроме того, при помощи таких фильтров можно исследовать условия снятия осадка с фильтровальной ткани. [c.152]

    При использовании некоторых фильтров предъявляются дополнительные требования к ткани. Например, для плиточно-рамных фильтрпрессов получают большое значение уплотняющие свойства ткани. Среди тканей из синтетических материалов в этом отношении наиболее пригодны штапельные ткани, за которыми следуют ткани из полифиламентных и монофиламентных нитей. В листовых фильтрах, работающих под вакуумом и под давлением, фильтровальная ткань натягивается на жесткие каркасы. Поскольку размер ткани после соприкосновения с суспензией не должен изменяться, необходима предварительная усадка ткани. [c.378]

    За рубежом имеется установка такого типа для получения твердого парафина. Процесс проводят в аппаратах колонного типа, в верхнюю часть которых через форсунки вводят расплавленный гач. Мельчайшие частицы парафина затвердевают в результате контакта с восходящим потоком воздуха. Масло, находящееся на поверхности частиц парафина, удаляется при помощи растворителя в системе противоточных смесителей и отстойников. Метод позволяет получить твердый парафин с содержанием масла не более 0,5% (масс.). К недостаткам данного процесса следует отнести значительные эксплуатационные затраты, связанные с грануляцией сырья в токе охлажденного воздуха, необходимостью получения гранул строго определенных формы и размера, поскольку чем больше размер получаемых гранул, тем хуже отмывается содержащееся в них масло. Для увеличения проницаемости осадка на фильтре к сырью добавляют инертный несжимаемый материал определенной степени грануляции. В качестве добавок предложны различные глины, бумажная пульпа, ламповая сажа, силикат и др. [85]. Для улучшения фильтрования и частичного предохранения фильтровальной ткани от забивки применяют фильтрующие добавки —газонаполненные микробаллончики из инертных по отношению к [c.164]


Библиография для Фильтровальная ткань: [c.393]   
Смотреть страницы где упоминается термин Фильтровальная ткань: [c.35]    [c.305]    [c.186]    [c.276]    [c.277]    [c.278]    [c.79]    [c.293]    [c.305]    [c.161]    [c.375]    [c.110]    [c.95]   
Основные процессы синтеза красителей (1952) -- [ c.25 ]

Технология ремонта химического оборудования (1981) -- [ c.194 , c.195 ]

Основные процессы синтеза красителей (1957) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура и методы испытаний фильтровальных тканей

Барабанные фильтры со сходящей фильтровальной ткань

Виды применяемых фильтровальных тканей

Кислотостойкость фильтровальных тканей

Максудов, Применение фильтровальных тканей из новых химически стойких волокон в производствах основной химии

О некоторых особенностях фильтрования промышленных суспензий и газов, конструкциях фильтров и требованиях к фильтровальной ткани

Опыт применения тканей в качестве фильтровального материала

Получение волокон, пряжи (нитей) и изготовление фильтровальных тканей, их физико-механические и химические свойства

Регенерация фильтровальных тканей

Результаты исследований фильтровальных свойств некоторых тканей

Сетки и ткани фильтровальные

Синтетические фильтровальные ткани и сетки

Стойкость фильтровальных тканей

Строение фильтровальных тканей

Строение фильтровальных тканей, их проницаемость и задерживающая способность

Технический расчет фильтровальных тканей

Ткани фильтровальные графитирование

Ткани фильтровальные из синтетических фторсодержащих волокон

Ткани фильтровальные натуральные

Ткани фильтровальные общая характеристика

Ткани фильтровальные синтетические

Ткани фильтровальные срок службы

Ткани фильтровальные хлопчатобумажные

Ткань фильтровальная рукавная

Физико-механические свойства и коррозионная устойчивость фильтровальных тканей

Физико-химические свойства фильтровальных тканей, их засоряемость и регенерация фильтрационных свойств

Фильтровальная ткань из синтетического волокна IHM

Фильтровальная ткань стеклянная

Фильтровальные ткани для хлорид-хлоратных растворов

Фильтровальные ткани из нейлона

Фильтровальные ткани из ровиля

Фильтровальные тканые

Характеристика фильтровальных тканей

также Нетканые материалы, Ткани фильтровальные



© 2025 chem21.info Реклама на сайте