Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы алюминиево-магниевые

Таблица 4.27. Содержание элементов алюминиево-магниевых сплавов Таблица 4.27. <a href="/info/175681">Содержание элементов</a> <a href="/info/449353">алюминиево-магниевых</a> сплавов

Таблица 4. Химический состав (%) исследованных алюминиево-магниевых сплавоЕ Таблица 4. <a href="/info/2736">Химический состав</a> (%) исследованных <a href="/info/449353">алюминиево-магниевых</a> сплавоЕ
    Алюминиево-магниевые сплавы склонны к образованию крупного зерна. Для измельчения зерна в сплавы вводятся специальные добавки марганца, хрома, ванадия и титана. [c.167]

    МФС-8 — анализ чистых металлов (А1, Си, Ag, Аи, РЬ, N1) на примеси цветных сплавов (алюминиевых, магниевых, титановых, медных, цинко вых и др.) углеродистых и среднелегированных сталей и чугунов - на вс легирующие элементы и примеси (кроме 8) порошкообразных чистых ма териалов, оксидов, ферросплавов и шлаков технических растворов I сточных вод (с предварительным выпариванием) руд и грунтов. [c.788]

    Деформируемые сплавы алюминия с магнием, применяемые в нефтяной, нефтехимической и газовой промышленности, содержат обычно не более 6—7% магния. Магний имеет достаточно высокую растворимость в алюминии, поэтому сплавы, содержащие до 7% магния, являются практически однофазными и, следовательно, не подвергаются термической обработке. При содержании в сплаве более 8% магния они приобретают возможность упрочняться термической обработкой. Однако ввиду специфических трудностей горячего деформирования слитков алюминиево-магниевые сплавы, содержащие 8% магнпя и более, не нашли практического применения. [c.167]

    Литье под давлением применяют для получения заготовок малогабаритных корпусных деталей из цветных сплавов (алюминиевых, цинковых, магниевых и медных) в крупносерийном массовом производстве. Полученная заготовка имеет высокую точность геометрической формы и размеров (0,02-0,04 мм) и щероховатость поверхностей Лг = = 20 мкм, что позволяет резко (до 85 %) сократить трудоемкость ее механической обработки по сравнению с заготовкой, полученной литьем в песчаные формы. [c.259]

    Как видно нз табл. 158, в процессе нагартовки повышаются прочность и снижаются пластические свойства алюминиево-магниевы.ч сплавов. [c.168]

    Пр боры И реактивы сплавы (алюминиевые, магниевые, медные, Железные, свинцовые), капельная пипетка, секундомер, фильтровальная бумага (полоски), микропробирки, пероксид натрия. [c.119]

    Для хранения и перевозки нефтепродуктов широко применяются бочки, также изготовленные из алюминиевых сплавов. Хранение авиационного топлива в алюминиевых бочках не изменяют ни качества бензина, ни состояния внутренней поверхности бочки. Алюминиевые бочки емкостью 191 л изготовляются из алюминиево-магниевого сплава, содержащего 5% магния. Бочки свариваются из листа толщиной 2 мм аргоно-дуговой сваркой. [c.188]


    Так, аргон используют в качестве защитной атмосферы (предохранение от окисления) при выплавке таких металлов, как уран, торий, германий, цирконий и гафний, а также при получении чистого кремния. На практике широко распространен способ электросварки (а также наплавки и резки) металлов в защитной атмосфере инертного газа —обычно аргона (аргонно-дуговая сварка титановых, алюминиевых, магниевых и др. сплавов, меди, вольфрама, нержавеющих сталей и т. д.). Чистые гелий и аргон—непревзойденные защитные газы при работе с химически малоустойчивыми веществами, легко поддающимися окислению. [c.544]

    Сплавы алюминия с магнием характеризуются высоким сопротивлением коррозии, хорошей свариваемостью. Механические свойства алюминиево-магниевых сплавов более высокие, чем у сплавов алюминия с марганцем. [c.167]

    Алюминиевые сплавы разделяются на сплавы, обрабатываемые давлением, и литейные сплавы. Сплавы на магниевой основе классифицируются таким же образом, как и алюминиевые сплавы. Подшипниковые сплавы (баббиты) классифицируются по составу. [c.66]

    Механические свойства алюминиево-магниевых сплавов в зависимости от их обработки [c.167]

    Из алюминиево-магниевых сплавов изготовляются также теплообменники, предназначенные для нагрева, конденсации и охлаждения нефти, нефтепродуктов п других жидких газо-парообразных сред. [c.186]

    Нами за эталон был принят алюминиево-магниевый сплав. АМг-2. Он практически не изменяет своих физико-механических свойств до температуры —70° (табл. 19) [141]. [c.123]

    При оценке коррозионной стойкости сплавов и средств противокоррозионной защиты важно также правильно выбрать показатель коррозии. Оценка коррозии по потере массы металла удовлетворительно отражает поведение стали, меди, цинка, но для таких сплавов, как алюминиевые, магниевые и нержавеющие стали, для оценки должен быть выбран другой показатель. [c.18]

    Эпоксидно-уретановые материалы. Эмаль ЭП-545 зеленая на основе смолы Э-49. Применяется для защиты изделий из стали и алюминиево-магниевых сплавов, эксплуатируемых в атмосферных условиях и при периодическом воздействии морской и пресной воды отвердитель — ДГУ (24,5 ч. на 100 ч. полуфабриката). [c.77]

    Меры профилактики. В производствах, связанных с получением и применением А., следует руководствоваться нормативными и рекомендательными документами для оздоровления условий труда применительно к конкретным производствам. К основным из этих требований относятся Санитарные правила для предприятий цветной металлургии (М., М3 СССР, 1983) Правила охраны труда в производстве сплавов из алюминиевых и магниевых деформируемых сплавов (М., 1968) Правила безопасности при производстве алюминия (М., Металлургия, 1977) Правила безопасности и промсанитарии при работе в литейных цехах и цехах переплава алюминиевых сплавов (М., НИАТ, 1962) Методические рекомендации по улучшению условий труда работающих при производстве хлористого алюминия (Баку, 1978) методические рекомендации Рационализация режимов труда и отдыха и снижение нагрузки на организм рабочих алюминиевой промышленности (Свердловск, 1975) отраслевые стандарты ССБТ сплавы алюминиевые, магниевые, магниево-литиевые. Производство слитков. Требования безопасности (08-6ту-1127.22.11.83) Сварка плазменная автоматическая алюминиевых сплавов Т.Т.П. (08-6ту-910.17.02.82) Пайка алюминия и его сплавов в расплавленных солях. Т.Т.П. (08-6ту-723.20.10.82). При получении керамзита и его использовании, при применении глин в производстве строительных материалов см. Правила техники безопасности и производственной санитарии в производстве керамзита, кирпича, черепицы и др. (М., ГОСИНТИ, 1971). [c.222]

    ГОСТ 9.019—74 ЕСЗКС. Сплавы алюминиевые и магниевые. [c.236]

    Анодирование сплавов — электрохимический процесс получения защитной или декоративной пленки на поверхности различных сплавов (алюминиевых, магниевых, титановых). Напр., при А. алюминиевых сплавов деталь погружают в кислый электролит (H2SO4, Н2СГО4) и соединяют с положительным полюсом источника тока выделяющийся при этом кислород взаимодействует с алюминием, образуя на его поверхности оксидную пленку. [c.18]

    Меры профилактики. Основные гигиенические требования, обеспечивающие безопасные условия труда при получении и применении М. и его соединений, изложены в нормативных документах, в Санитарных правилах для предприятий цветной металлургии (М., М3. СССР, 1983) в Санитарных правилах при производстве и обработке магниево-фтористых сплавов (М., М3 СССР, 1966) в Правилах по технике безопасности и пожарной безопасности при литье, механической и других видах обработки магниевых сплавов (М., НИ АТ, 1976) в отраслевом стандарте ОСТ 92055 ССБТ. Сплавы алюминиевые, магниевые, магниево-литиевые. Производство слитков. Требования безопасности в технических условиях Магний фтористый для вакуум-испарения (08-6ту-880.16.10.84). Источники, загрязняющие воздушную среду М. и его соединениями, должны быть локализованы согласно требованиям, предусмотренным в Санитарных правилах для предприятий цветной металлургии (разделы 4 — Требования к технологическим процессам и оборудованию и 6 —Требования к отоплению и вентиляции). Ручной сбор хлопка при дефолиации хлоратом М. разрешается не ранее чем через 7 дней после обработки ( Справочник по пестицидам ). [c.109]


    Лигатур Ы.1Б металлургии черных и цветных металлов титан применяется в качестве раскислителя и деазотизатора, так как он энергично соединяется с кислородом и азотом, образуя соединения, уходящие в шлак.сЛля этой цели используют ферротитан (18—25% Т1), купротитан (5—12% Т1), алютит (40% А1, 22—50% Т1 и до 40% Си). Очистка от кислорода способствует образованию тонкой плотной структуры стали, обладающей повышенными механическими свойствами. Титан связывает и серу, вызывающую красноломкость стали, х/ При введении титана в качестве легирующей добавки в хромо-никелевые нержавеющие стали (до 0,8%) образуются включения карбидов титана, повышающие жаростойкость и уменьшающие склонность к межкристаллитной коррозии при сварке и термической обработке. У Присадка 0,05—0,15% титана к обычной углеродистой стали облагораживает ее и улучшает механические свойства. Введение титана в алюминиево-магниевые сплавы (до 0,6%) улучшает их механические свойства, повышает коррозийную стойкость и устойчивость к окислению при нагревании [II, 35]. [c.242]

    Процесс химического никелирования широко применяют во многих отраслях машиностроения СССР. На ряде предприятий его используют для повышения износостойкости и защиты от коррозии деталей точных приборов и механизмов, предназначенных для эксплуатации как в обычных условиях, так и в условиях тропического климата (например, детали счетноаналитических машин и др.). В приборостроительной промышленности этим способом наносят покрытия на детали, изготовленные из стали, медных и алюминиевых сплавов и имеющие сложную конфигурацию (длинные и узкие каналы, глухие отверстия, резьбу и т. п.). Его применяют в оптической, электротехнической промышленности. Осаждение металлов методом химического восстановления получило большое развитие в США, Англии, Франции, ФРГ, Японии и других странах. В химической, нефтяной и других отраслях промышленности этих стран химическое никелирование используют для защиты крупных деталей сложного профиля, эксплуатирующихся в коррозионноагрессивных средах. Покрытия наносят на детали из различных сталей, чугуна, меди и ее сплавов, алюминиевых, магниевых и титановых сплавов и др., а также из неметаллов. С целью повышения износостойкости никелируют многочисленные детали автомобильной и авиационно-ракетной техники алюминиевые поршни, детали реактивных двигателей, внутренние стенки цилиндров компрессоров, насосов, детали очистительно-осушительных систем, бензиновые баки, цистерны для перевозки и баки для хранения различных химических веществ, детали арматуры атомных реакторов, в том числе длиноразмерные трубы, волноводы радиолокационных установок, лопатки компрессоров. Никелируют печатные схемы, что обеспечивает хороший контакт между обеими сторонами панели, так как все отверстия полностью покрываются никель-фосфорным слоем. [c.307]

    Лигатуры. В черной металлургии цирконий применяют как рас-кислитель и деазотизатор сталей. По эффективности действия он превосходит Мп, 81, Т1. В сталь его вводят в виде ферроциркония (40% 2г, 10% 51, 8—10% А1), ферросиликоциркония (20—50% 2г, 20— 50% 51) и в виде других сплавов. Легирование сталей цирконием (0,8— 0,25%) улучшает их механические свойства и обрабатываемость. Добавка циркония к алюминиевыми магниевым сплавам (до 0,8%) повышает их механическую прочность и ковкость. Цирконий делает более прочными жаростойкими медные сплавы при незначительном уменьшении электропроводности. Электропроводность сплава меди с 0,9% Сс1 и 0,35% 2г 78% от электропроводности чистой меди он применяется в электродах контактной сварки. [c.308]

    Сварка литейных алюминиево-магниевых сплавов с содержанием берил-JПИЯ от 0,2% до 0,4% [c.374]

    При потенциалах ниже —1,1 В соответствует именно водородаому растрескиванию [58]. К тому же при повышенной температуре стали разрушаются от КРН в воде быстрее, чем при комнатной при водородном растрескивании (катодная поляризация), напротив, время до разрушения снижается по мере повышения температуры. Механическая обработка высокопрочных сталей повышает устойчивость к КРН (критический потенциал становится положительнее потенциала коррозии), тогда как устойчивость к водородному растрескиванию падает. Следовательно, на практике важно иметь в виду, что тросы мостов, изготовленные из высокопрочной стали, должны пройти холодную обработку, чтобы уменьшить опасность растрескивания во влажном воздухе. Без такой обработки тросы разрушаются преждевременно несмотря на достаточный запас прочности, как это имело место в США и других странах. Более того, обезуглероженная с поверхности высокопрочная сталь (т. е. с более мягкой поверхностью) не разрушается в кипящей воде или в 3 % растворе Na l, но быстро растрескивается при катодной поляризации. Назначительное количество водорода, образованного в результате реакции железа с водой, не оказывает влияния на твердые подповерхностные слои стали. Адсорбированная вода в большей степени, чем растворенный в решетке водород, является причиной растрескивания высокопрочных сталей и, возможно, высокопрочных мартенситных и дисперсионнотвердеющих нержавеющих сталей, алюминиевых, магниевых и титановых сплавов, а также - и -латуней — все они склонны к разрушению в присутствии влаги. [c.152]

    Склонностью к КРН во влажном воздухе. Установлено, что сплавы с 1,5 % Мп, 3 % Zn и 0,7 % Zr среди магниевых сплавов являются относительно стойкими [36]. В отличие от алюминиевых, магниевые сплавы растрескиваются преимущественно транскристаллитно. [c.355]

    Применение скандия, РЗЭ и их соединений. Металлический скандий применяется как фильтр нейтронов в ядерной технике и как легирующий металл в черной и цветной металлургии. Добавка 1% иттрия к нержавеющим сталям повышает температуру их окисления до 1200—1300 °С. Кроме того, применительно к магниевым и алюминиевым сплавам иттрий является хорошим упроч-иителем. Лантаноиды, несмотря на сравнительно высокую стоимость, нашли применение в атомной технике, электронике, электро- и радиотехнике, а также в черной и цветной металлургии. В атомной технике применяются лантаноиды с большими сечениями захвата нейтронов (гадолиний, самарий, европий). Церий и мишметалл входят в состав геттеров. Кроме того, церий широко применяется для легирования сталей, чугуна, алюминиевых, магниевых и других сплавов. [c.179]

    ГОСТ 9.081 - 77. ЕСКЗС. Полуфабрикаты из алюминиевых. магниевых сплавов. Общие требования к временной противокоррозионной защите и хранению.  [c.143]

    ГОСТ 9.019 - 74. ЕСКЗС. Сплавы алюминиевые и магниевые. Методы ускоренных испытаний на коррозионное растрескивание.  [c.147]

    В США для погружаемых морских конструкций наиболее употребительны сплавы системы А1-М различных составов. В табл. 3 представлены усредненные данные о скоростях общей коррозии и глубине питтингов после зкспозиции в морской воде и в иле, а в табл. 4 указан химический состав исследованных алюминиево-магниевых сплавов. [c.23]

    Механнческие свойства алюминиево-магниевых сплавов так же, как алюми-гшево-марганцевистых, можно изменять путем нагартовки (рис. 64). В табл. 158 [c.167]

    Электрогазорезка стали и алюминиево-магниевых сплавов Газовая резка титанового сплава [c.374]

    Примечание. Для всех марок алюминиево-магниевых сплавов, кроме АМгбТ, содержание Ре -< 0,5%. [c.167]

    Механические свойства алюминиево-магниевых сплавов изменяются п в зависимости от температуры испытания. В табл. 159 показана эта записи мость для сплавов марок АМгЗ АМг5В и АМгбТ (поставлен ных в отожженном состоянии) С повышением температуры прочность сплавов снижается. Особенно снль ное снижение прочности наблюдается при температурах 150—200 С. Поэтому алюминиево-магниевые сплавы применяются обычно при температурах не выше 150° С. [c.168]

    Ркследование показало, что во всех случаях средняя скорость коррозии алюминиево-магниевых сплавов в средах конденсационно-холодильного оборудования была меньше средней скорости коррозии утлеродистой сталп. Наибольшую коррозионную стойкость алюминиевые сплавы показали в средал конденсаторов-холодильников Т-11 и Т-6 термического крекинга. [c.179]

    В условиях калориферной шахты сушильного агрегата, а также в среде ипертиого газа скорость коррозии алюминиево-магниевых сплавов во много раз меньше скорости коррозии углеродистой стали. На установке фенольной очистки все исследованные алюминиевые сплавы характеризуются очень высокой коррозионной стойкостью. Скорости коррозии алюминиевых сплавов в этом случае меньше не только по сравнению с углеродистой сталью, но и и(, сравнению с нержавеющей сталью маркн 1Х18Н9Т. [c.179]

    Решетки для аппаратов этого типа иногда изготовляются из алюминиево-магниевых сплавов тииа АМг5В и АМгбТ, содержащих до 7% магния. Развальцовка трубок, изготовленных также из алюминиевых сплавов в этой решетке может вызвать местный наклеп металла. Последующий длительный нагрев металла решетки в процессе эксплуатации может привести к коррозионному растрескиванию материала. [c.181]

    Алюминиевые сплавы применяют для изготовления теилообмеиных аппаратов нефтеперерабатывающих заводов. Трубчатые пучки этих аппаратов обычно изготовляют из алюминиево-магниевого силава марки АМг или АМг2. Трубки развальцовываются в трубной решетке, изготовленной из алюминиево-магниевого силава маркн АМгбТ. [c.186]

    Корро.зийная стойкость алюминиево-магниевых силавов в охлаждающе воде может быть повыщена методам оксидирования поверхности труб. Оксидные пленки увел1 чивают срок службы оборудования из ал ом ниево-маг-ниевых сплавов, потому что пер юд до начала коррозионного разрушения изменяется, а скорость коррозионного процесса уменьщается. [c.187]

    Судостроение, а позднее и сооружение портов являются одними из старейших областей применения катодной защиты от коррозии (см. раздел 1.3). Для судов и сооружений, располагаемых в прибрежном шельфе, пока применяют преимущественно протекторную защиту, тогда как для портовых сооружений и мостовых перегружателей ввиду потребности в большом защитном токе предпочитают применять станции катодной защиты. Характерные проблемы коррозии для сооружений в прибрежном шельфе встретились уже в середине 1950-х гг. в Мексиканском заливе. Однако скорость коррозии здесь была меньшей по сравнению с наблюдаемой в Северном море (см. табл. 17.2). В допол-нение к этому на передний план все более выступают проблемы усталостного коррозионного растрескивания [13]. В отличие от свайных причалов н судов, на сооружениях в прибрежном шельфе в большинстве случаев не применяют никаких защитных покрытий или используют только временные покрытия. Защита от коррозии обеспечивается по катодной схеме. Значение токоотдачи (в ампер-часах) протекторов из алюминиевых, магниевых и цинковых сплавов согласно данным табл. 7.2—7.4 относятся как 3,1 1,4 1. Напротив, цена этих протекторов (в марках за 1 кг) относится как 1,3 2,8 1, так что удельные затраты в марках ФРГ на 1 А-ч находятся между собой в соотношении 1 2,4 4,7 и наиболее выгодными оказываются алюминиевые протекторы. Многолетние наблюдения за протекторами трех типов в Мексиканском заливе показали, что затраты на них относятся между собой как 1 3,5 2 [13]. Таким образом, магниевые протекторы для использования в прибрежном шельфе неэкономичны. Защита цинковыми протекторами обходится дороже защиты алюминиевыми протекторами. [c.421]

    Стали и сплавы. Методы испытания на межкристаллитную коррозию ферритных, аустенитно-мартеыситиых, аустенитно-ферритных и аустенитных коррозионно-стойких сталей и сплавов иа железоникелевой основе ЕСЗКС. Алюминий и сплавы алюминиевые. Методы ускорения испытаний на межкристаллитную коррозию ЕСЗКС. Сплавы алюминиевые и магниевые. Методы ускоренных испытаний на коррозионное растрескивание ЕСЗКС. Сплавы алюминиевые. Метод ускоренных испытаний на расслаивающую коррозию Обеспечение износостойкости изделий. Метод испытаний машиностроительных материалов на ударно-абразивное изнашивание [c.106]


Смотреть страницы где упоминается термин Сплавы алюминиево-магниевые: [c.142]    [c.349]    [c.180]    [c.167]    [c.167]    [c.187]    [c.188]    [c.310]   
Аналитическая химия циркония и гафния (1965) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Магниевые сплавы

Магниевый ИСМ

Сплавы алюминиевые

алюминиевый



© 2025 chem21.info Реклама на сайте