Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рассеяние света дисперсными системами

    Чем обусловлено светорассеяние в дисперсных системах и истинных растворах Какими параметрами количественно характеризуют рассеяние света в системе  [c.127]

    Светорассеяние, или опалесценция, принадлежит к дифракционным явлениям, обусловленным неоднородностями, размеры которых меньше длины волны падающего света. Такие неоднородности рассеивают свет во всех направлениях. Теория светорассеяния (опалесценции) впервые была развита Рэлеем. В ее основе лежит уравнение для интенсивности света /р, рассеянного единицей объема дисперсной системы со сферическими диэлектрическими частицами, значительно меньшими длины [c.111]


    Наряду с изучением рассеяния света дисперсной системой в целом применяются также методы, основанные на регистрации рассеяния (дифракции) света на единичных частицах. Этот метод — ультрамикроскопия — имел большое значение в развитии коллоидной химии. Для наблюдения рассеяния света отдельными частицами применяются оптические системы с темным полем. К их числу относятся ультрамикроскопы, в которых интенсивный сфокусированный световой поток направляется сбоку на исследуемую систему, а также конденсоры темного поля, которые используются в обычных микроскопах для создания бокового освещения. Регистрация светящихся точек, хорошо видимых на темном фоне и представляющих собой свет, рассеянный (дифрагированный) отдельными частицами, позволяет определить концентрацию частиц дисперсной фазы, наблюдать флуктуации их концентрации и броуновское движение. Такие опыты, проведенные Перреном, Сведбергом и рядом других ученых, явились подтверждением правильности теории броуновского движения (см. гл. V) и молекулярно-кинетической концепции в целом. С. И. Вавиловым был разработан иной метод изучения броуновского движения. В этом методе производилась фотосъемка частиц дисперсной фазы, находящихся в броуновском движении. Перемещение частиц приводило к тому, что их изображения на пластинках имели вид размазанных пятен в полном согласии с теорией броуновского движения средняя площадь этих пятен оказалась пропорциональной времени экспозиции. В этом методе удается фиксировать одновременно несколько частиц, что облегчает получение необходимого для статистического усреднения большого количества экспериментальных результатов. [c.171]

    Нефелометрия основана на измерении интенсивности света, рассеянного дисперсной системой /р. Способность частиц к рассеянию или отражению света определяется размером частиц и длиной волны падающего света. Интенсивность светового потока, рассеиваемого дисперсными частицами, определяется уравнением Рэлея [c.89]

    ОПАЛЕСЦЕНЦИЯ ж. Рассеяние света коллоидной системой, в которой показатель преломления частиц дисперсной фазы заметно отличается от показателя преломления дисперсионной среды. [c.296]

    Несмотря на то, что аэрозоли широко распространены в природе и непрерывно образуются в результате человеческой деятельности, научное их исследование началось сравнительно недавно. Во второй половине XIX века несколько крупных физиков и математиков, заинтересовавшихся специфическими свойствами аэродисперсных систем, занялись их изучением. Вывод Стоксом формулы для сопротивления вязкой среды движению частиц, качественное исследование рассеяния света дисперсными системами, предпринятое Тиндалем, и количественное исследование того же явления, принадлежащее Релею, изучение атмосферных ядер конденсации Айткеном — примеры исследований, послуживших фундаментом для дальнейшего развития физики аэрозолей. Однако в начале XX века работа в этом направлении замедлилась в Связи с возникновением новой физики и, может быть, прекратилась бы совсем, если бы не интерес к аэрозолям, появившийся у работников в других отраслях науки и техники. Нужды промышленности, медицины (профилактики и терапии),сельского хозяйства и метеорологии настоятельно требовали изучения различных аспектов аэродисперсных систем. Во время первой и, особенно, второй мировой войны были предприняты обширные исследования химии и физики аэрозолей, в особенности дымовых завес в результате, за сравнительно короткий срок в этой области были достигнуты большие успехи. [c.14]


    Рассеяние света дисперсной системой [c.30]

    Нефелометрия — метод исследования, при котором измеряют интенсивность рассеянного света, падающего на кювету с дисперсной системой. Обычно объемная концентрация с дисперсной фазы известна или легко определяется. Поэтому соотношение (IV. 1) при данной длине волны удобно записать в виде (0 = onst) [c.112]

    В. Рэлей развил теорию рассеяния света дисперсными системами, в которых частицы ие поглощают свет и имеют сферическую форму. В полученной формуле он связал световую энергию, рассеянную единицей объема дисперсной системы, с концентрацией частиц и их объемом V, длиной световой волны X и показателями преломления дисперсной фазы Пх и дисперсионной среды П2- Эта формула имеет вид  [c.389]

    При обсуждении рассеяния света принималось, что частицы дисперсных систем не поглощают свет. Однако многие коллоидные системы имеют определенную окраску, что указывает на поглоще ние ими света в соответствующей области спектра. Это значит (как известно из оптики), что золь кажется окращенным в цвет, дополнительный поглощенному. Например, поглощая синюю часть (435—480 нм) видимого спектра (400—760 нм), золь оказывается желтым, при поглощении синевато-зеленой части (490—500 нм) он имеет красный цвет и т. д. При совместном действии всего видимого спектра на глаз человека возникает ощущение белого цвета-Позтому если лучи всего видимого спектра проходят через прозрачное тело нли отражаются от непрозрачного, то прозрачное тело кажется бесцветным, а непрозрачное — белым. Если тело поглощает весь видимый спектр, оно кажется черным. [c.265]

    Согласно выражению (VI—7), при рэлеевском рассеянии света мутность системы пропорциональна концентрации и квадрату объема частиц дисперсной фазы и обратно пропорциональна четвертой степени длины волны. Поскольку мутность системы при рэлеевском рассеянии резко падает с увеличением длины волны, при их освещении белым светом появляется красная окраска в проходящем свете. В природе это наблюдается прн восходе и заходе солнца, когда свет, проходя через большую толщу атмосферы, обогащается красными лучами. Рассеяние этих красных лучей облаками создает типичную картину восхода и заката. [c.164]

    Рассеяние света. Одним из основных преимуществ оптических методов определения размеров частиц является то, что взаимодействие излучения с частицами не меняет структуры системы, т. е. дисперсная с[1стема остается прежней (за исключением тех случаев, когда происходят фотохимические реакции). К числу наиболее перспективных относится метод фотокорреляционной спектроскопии [133, 134]. Причиной светорассеяния является наличие оптических неоднородностей в среде. Такие среды называют мутными. В основе теории рассеяния света в мутных средах лежат следующие предположения 1) размер частиц много меньше длины волны света (/ Д 0,1) 2) не происходит поглощения (раствор не окрашен) 3) форма частиц близка к сферической 4) концентрация частиц мала, так что не происходит интерференции пучков, рассеянных различными частица- [c.94]

    Напряженность электрического поля отражает энергию падающего светового потока. В соответствии с теорией электромагнитного поля интенсивность света (плотность потока энергии) пропорциональна квадрату амплитуды волны, излучаемой электрическим диполем. В свою очередь амплитуда волны пропорциональна квадрату частоты колебаний диполя. Таким образом, интенсивность рассеянного света пропорциональна частоте колебаний диполя в четвертой степени или обратно пропорциональна длине волны в четвертой степени Я . Отсюда вытекает, что лучи с меньшей длиной волны сильнее рассеиваются. При рассеянии белого света дисперсной системой с мелкими части-цами рассеянный свет оказывается голубым, а проходящий — [c.296]

    Именно отражение и преломление света частицами дисперсной фазы обусловливают рассеяние света грубодисперсными системами, и роль диффракции здесь обычно невелика. [c.73]

    Рассеяние света в системах с коллоидной степенью дисперсности, взвешенные частицы в которых по своим размерам меньше длины полуволны света, обязано не обычному отражению светового луча, а совершенно другой причине, а именно—явлению диффракции света. Диффракция, как известно, заключается в способности света при встрече с мелкими препятствиями (в виде узких отверстий и щелей и мелких частиц), вопреки прямолинейности его распространения, как бы обходить (огибать) эти препятствия и частично рассеиваться в виде значительно менее интенсивных (но с той же частотой) волн, расходящихся во все направления, т. е. каждое такое препятствие становится источником новых—вторичных—волн. Именно этот вид светорассеяния и обусловливает явление опалесценции и эффект Фарадея—Тиндаля в золях. [c.49]


    Свет, проходящий через дисперсные системы, молсет поглощаться, отражаться или рассеиваться, в результате чего происходит его ослабление. В ряде случаев эти эффекты могут наблюдаться одновременно например, золи золота, гидроксида железа, графита поглощают и рассеивают проходящий свет. При поглощении света часть электромагнитной энергии падающего пучка света преобразуется в конечном итоге в теплоту. При отражении или рассеянии света проходящий свет ослабляется лишь в связи с тем, что часть электромагнитных лучей меняет свое исходное направление. [c.388]

    Если дисперсная система содержит частицы, размер которых больше, чем О,IX, то помимо увеличения интенсивности рассеяния в направлении падающего света н уменьшения ее — в обратном направлении проявляются отклонения от закона Рэлея. Эти отклонения относятся к зависимости рассеяния света от длины волны и к поляризационным явлениям. Они могут быть использованы для суждения о размерах частиц. С увеличением размеров частиц [c.261]

    Поскольку, по условию, llv = N соответствует числу микрообъемов в 1 см , умножив формулы (2.13) — (2.15) на мы получим общее количество света, рассеянного 1 см дисперсной системы. В этих формулах величина йР1йс определяется из зависимости осмотического давления от весовой концентрации с . [c.24]

    Коэффициент к учитывает также рассеяние света (мутность системы). Для исследования цветных золей можно использовать расесяние света в чистом виде, т. е. использовать турбидиметрию. Для этого применяют светофильтры, поглощающие свет в той же обласри спектра, что и исследуемый золь. Золи подчиняются закону Бугера — Ламберта — Бера при условии, что дисперсность частиц постоянна, а их концентрация достаточно мала (для исключения взаимного влияния частиц). [c.266]

    Исходя из вышеизложенного, можно уточнить понятие параметра порядка для нефтяной дисперсной системы. Очевидно, что он должен представлять комбинацию нескольких внутренних переменных системы, например плотности, вязкости, коэффициента поглощения или рассеяния излучения когерентных источников света или звука и связанных с этим диффузионных эффектов в инфраструктуре системы и т.н. [c.181]

    В коллоидных системах к этому добавляется еще эффект рассеяния света коллоидными частицами, наиболее значительный для лучей г риьигрй л.пинпй нплны. т. е. для синих и фиолетовых лучей. Этот фактор действует значительно слабее, чем избирательное поглощение колебаний с определенной длиной волны, однако влияние его все же заметно проявляется. Вследствие этого в отраженном (точнее говоря, в рассеянном) свете большинство бесцветных коллоидных растворов имеет синеватый оттенок, а в проходящем свете, соответственно, — оранжевый или красноватый, так как проходящий свет частично лишается синих и фиолетовых лучей. Если само вещество дисперсной фазы коллоида окрашено, то коллоидный раствор приобретает интенсивную окраску. Таковы, например, оранжевые золи сернистого мышьяка или темно-коричневые золи гидроокиси железа. При этом в некоторых случаях на цвет раствора оказывает влияние и степень дисперсности. Так, высокодисперсные золи золота окрашены в ярко-красный цвет при уменьшении степени дисперсности цвет их изменяется и становится темно-синим при коагуляции. [c.536]

    Как уже отмечалось, при достаточно низких концентрациях рассеивающих частиц общее количества света, рассеянного в единице объема дисперсной системы, в котором содержится с частиц, равно произведению Я-с, а интенсивность света, рассеянного в данном направлении, равна соответственно /-с. [c.22]

    При увеличении частиц до размера, значительно превышающего длину световой волны, светорассеяние, как было указано выше, переходит в отражение света и по мере увеличения частиц интенсивность рассеянного света уменьшается. На рис. И, 2 показано выраженное в условных единицах рассеяние света суспензией сульфата бария в зависимости от дисперсности системы (при постоянной весовой концентрации). Светорассеяние характеризуется начальной, восходящей частью кривой. [c.36]

    Для растворов помимо флуктуаций плотности наблюдаются и флуктуации концентрации, которые, конечно, тоже могут являться причиной рассеяния света. Совершенно очевидно, что у коллоидных систем частицы дисперсной фазы формально также можно рассматривать как флуктуации концентрации с существованием, затянувшимся на неопределенно долгое время. Благодаря такой точке зрения возможен единый подход к объяснению светорассеяния индивидуальными жидкостями, истинными растворами и коллоидными системами и применение во всех случаях уравнения Рэлея. К вопросу о флуктуациях мы возвратимся в следующей главе. [c.38]

    Нефелометрически метод исследования основан на измерении интенсивности света, рассеянного дисперсной системой. Более высокая чувствительность и точность этого метода по сравнению о достигаемой в турбидиметрии позволяют определить не только концентрацию и размер частиц в золях, но и форму частиц, меж-частичные взаимодействия и другие свойства дисперсных систем, В основе нефелометрии лежит уравнение Рэлея (V. 9), Если необходимо определить только размер частиц и их концентрацию, то достаточно измерить интенсивность рассеянного света под одним углом, II поэтому уравнение Рэлея можно представить в следующем виде  [c.263]

    Вопрос об окраске металлических золей во многих случаях усложняется еще и тем, что помимо дисперсности системы на абсорбцию и рассеяние света влияют форма и строение частиц. Связь между этими факторами и окраской металлических золей подробно рассмотрена в работах Ми и Ганса. [c.44]

    Изучение рассеяния света важно для суждения о величине и форме частиц коллоидной дисперсности, которые слишком малы для непосредственного исследования их с помощью обычного микроскопа. На явлении рассеяния света основан ряд методов определения размера и формы частиц с использованием ультрамикроскопа, фотоэлектроколориметра, нефелометра и поляриметра. В ультрамикроскопе каждая частица обнаруживается в отдельности в виде светящейся точки или системы дифракционных колец. В остальных методах величина частицы оценивается на основании измерений интенсивности светового потока и степени поляризации в различных направлениях при рассеянии света в мутной среде. В совокупности эти методы дают возможность составить более или менее ясное представление и о форме частиц. [c.30]

    Свет рассеивается микрогетерогенными системами только в том случае, если размер частиц г меньше длины световой волны X, а расстояние между частицами больше световой волны. При размере частицы г < X световая волна огибает частицу происходит дифракционное рассеяние. Если размер частиц значительно больше длины световой волны, происходит отражение света. Рассеяние света связано с тем, что переменное электрическое поле световой волны возбуждает частицу, индуцируя в ней переменный дипольный момент. В результате этого частица становится источником собственного излучения, сохраняя строгие фазовые соотношения с облучающим электрическим полем. Такое рассеяние света называется когерентным. Если падающий луч света монохроматичен, то свет, рассеянный частицами, таклсе монохроматичен и имеет такую же длину волны, как и свет падающий. Свет, рассеянный частицей, попадает на находящиеся вблизи частицы, происходит многократное рассеяние света. В результате возникает само-освещение среды рассеянными внутри нее электромагнитными волнами. Вследствие когерентности света, рассеянного частицами, волны рассеянного ими света интерферируют между собой и с волнами падающего света. На границе дисперсионная среда — дисперсная фаза происходит полное гашение облучающей волны, и вместо нее возникают преломленные и отраженные волны. [c.389]

    Интенсивность света, рассеянного разбавленной дисперсной системой, а также угловое распределение рассеянного света (индикат-рисса рассеяния) зависят от значений двух безразмерных параметров — а и 2. Параметр а характеризует отклонение свойств частицы от свойств среды и определяется уравнением [c.40]

    Теория рассеяния света коллоидно-дисперсными системами была разработана Рэлеем в 1871 г. Она устанавливает зависимость интенсивности (количества энергии) рассеянного света (/) прн опалесценции и в конусе Фарадея — Тиндаля от внешних и впутреп- [c.296]

    Оптические свойства. Частицы дисперсной фазы коллоидной системы рассеивают падающий на них свет. Причиной рассеяния света является оптическая неоднородность коллоидных систем, т. е. разные оптические свойства дисперсной фазы и дисперсионной срсды. Пз этих сво11ств прежде всего следует указать показатель преломления, значение которого для дисперсной фазы и дисперсионной срсды различны. Вследствие этого луч света, проходя через дисперснониуга среду и попадая на частицу дисперсной фазы, обязательно изменяет свое направление, причем тем резче, чем больше показатель преломления дисперсной фазы отличается от показа-те. 1я преломления дисперсионной среды. Рассеяние света коллоид-И1.1МИ системами может быть различным в зависимости от соотно- [c.196]

    Покажите, в каком случае и во сколько раз интенсивность рассеянного дисперсной системой света больше при освещении синим светом (Х1 = 410 нм) или красным светом ( 2 = 630 нм). Светорасс .чние проис.ходит в соответствии с уравнением Рэлея, и интенсивности падающих монохроматических пучков света равны. [c.128]

    Ультрамикроскопия от обычной микроскопии отличается тем, что объект (дисперсная система) освещается сбоку, а наблюдают рассеянный свет. Вследствие этого частицы кажутся светящимися точками на темном фоне, и разрешающая сила микроскопа резко возрастает, что позволяет наблюдат[> частицы с диаметром до 2—3 нм. [c.112]

    Изменение дисперсности (размеров частиц) в результате коагуляции можно обнаружить но изменению оптических свойств системы, в частности по изменению интенсивности светорассеяния (опалесценции). С увеличением размеров частиц увеличивается интенсивность рассеянного света когда размеры частиц становят-120 [c.120]


Смотреть страницы где упоминается термин Рассеяние света дисперсными системами: [c.207]    [c.5]    [c.254]    [c.410]    [c.224]    [c.410]    [c.256]    [c.257]    [c.260]    [c.84]   
Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.295 , c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Оптические и кинетические свойства коллоидных систем Оптические свойства коллоидных систем Рассеяние света в дисперсных системах

Рассеяние света



© 2025 chem21.info Реклама на сайте