Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Светорассеяние теория

    Светорассеяние, или опалесценция, принадлежит к дифракционным явлениям, обусловленным неоднородностями, размеры которых меньше длины волны падающего света. Такие неоднородности рассеивают свет во всех направлениях. Теория светорассеяния (опалесценции) впервые была развита Рэлеем. В ее основе лежит уравнение для интенсивности света /р, рассеянного единицей объема дисперсной системы со сферическими диэлектрическими частицами, значительно меньшими длины [c.111]


    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]


    Более общая теория рассеяния света и соответствующие расчетные формулы, справедливые для дисперсных систем всех степеней дисперсности, были предложены Г. Ми. Он учел, что при больших размерах частиц (г > 0,1 ь) наряду с электрическими возникают и магнитные поля, что осложняет картину рассеяния света системой и делает ее очень чувствительной к отношению г К. Максимум рассеяния согласно теории Ми наблюдается для систем с размерами частиц от 1/4 до 1/3 к. Теория Ми охватывает также системы с частицами, проводящими электрический ток, для которых формула Рэлея непригодна. Согласно теории Ми интенсивность светорассеяния проходит для проводящих частиц через максимум, положение которого зависит в основном от длины световой волны. [c.390]

    Теорию светорассеяния развил лорд Рэлей для сферических, не поглощающих свет, непроводящих частиц. При прохождении световой волны переменное во времени электромагнитное поле вызывает их поляризацию. Возникающие диполи с переменными электромагнитными моментами являются источниками излучения света. В однородной среде свет, излучаемый всеми диполями, вследствие интерференции распространяется только в первоначальном направлении (принцип Гюйгенса). Если же в среде имеются неоднородности с другим показателем преломления, например, коллоидные частицы или системы с флуктуациями плотности (обусловленные ассоциатами молекул или отдельными макромолекулами), значение дипольного момента в этих узлах становится иным и диполи испускают нескомпенсированное излучение в форме рассеянного света. Момент индуцированного диполя зависит от поля, т. е. от частоты или длины волны Я. [c.39]

    Теория светорассеяния была разработана Д. Рэлеем (1871). Уравнение Рэлея для интенсивности рассеянного света 1р имеет вид [c.389]

    В случае эмульсий без адсорбционного слоя (белых) необходимо рассмотреть зависимость между светорассеянием и распределением частиц по размеру. Теория строго справедлива только для очень разбавленных сферических дисперсий, поскольку оптическая интерференция между частицами усложняет исследование. Если размер частиц превышает длину волны света (< 0,1 Я), светорассеяние описывается теорией Релея, согласно которой рассеяние пропорционально квадрату объема частиц. Поэтому флокуляция будет сопровождаться увеличением светорассеяния или мутности. [c.103]

    В отличие от коллоидной частицы, макромолекула обладает способностью изменять свою форму в весьма широких пределах, что позволяет применять к растворам ВМС статистику гибких цепей. Особенности свойств растворов ВМС (например, существование отдельных молекул, гибкость цепей) породили в последние годы тенденцию к выделению растворов ВМС из круга дисперсных систем с перспективой создания специальной дисциплины — физической химии ВМС и их растворов. Подобная тенденция вряд ли имеет достаточные основания. Отличительные признаки в известной мере формальны и не устраняют общности, существующей между этими двумя классами, несмотря на целый ряд различий, которые в настоящее время не представляются столь абсолютными. Так, исследование некоторых свойств (светорассеяние и другие) растворов ВМС позволяет обнаружить известную гетерогенность этих систем, а теории, основанные на представлении о макромолекуле как отдельной микрофазе, получают в настоящее время широкое признание и оказываются весьма перспективными. Общность же двух классов проявляется не только в свойствах, непосредственно связанных с размерами частиц, но и в существовании непрерывного перехода от одного класса к другому. Растворы ВМС легко превращаются в типичные гетерогенные золи при непрерывном, часто незначительном изменении состава среды. Так, белок, растворенный в воде до молекул, при добавлении спирта переходит в лиофобный золь при непрерывном изменении состава среды. [c.15]

    Дж. Релей создал теорию светорассеяния коллоидных растворов и предложил уравнение, характеризующее этот процесс  [c.313]

    Теория Смолуховского неоднократно подвергалась экспериментальной проверке. Значения о и 2 определяют на опыте либо прямым путем — подсчетом числа частиц в единице объема ультра-микроскопическим методом в различные Рнс. 95. Зависимость числа моменты времени, с построением кри- Л вых V —либо методом светорассеяния [c.246]

    Рассеяние света. Одним из основных преимуществ оптических методов определения размеров частиц является то, что взаимодействие излучения с частицами не меняет структуры системы, т. е. дисперсная с[1стема остается прежней (за исключением тех случаев, когда происходят фотохимические реакции). К числу наиболее перспективных относится метод фотокорреляционной спектроскопии [133, 134]. Причиной светорассеяния является наличие оптических неоднородностей в среде. Такие среды называют мутными. В основе теории рассеяния света в мутных средах лежат следующие предположения 1) размер частиц много меньше длины волны света (/ Д 0,1) 2) не происходит поглощения (раствор не окрашен) 3) форма частиц близка к сферической 4) концентрация частиц мала, так что не происходит интерференции пучков, рассеянных различными частица- [c.94]


    Дебай, исходя из флуктуационной теории светорассеяния и используя уравнение (V. 5) для осмотического давления, получил соотношение между мутностью т раствора полимера, его массовой концентрацией с и молекулярной массой полимера М  [c.146]

    Теорию светорассеяния создал Рэлей. [c.90]

    Более детальное рассмотрение вопроса на основе статистической механики позволяет оценить значения констант Л, В и Л". Теория хорошо согласуется с опытом. Экспериментальные значения констант, найденные по измерениям ККМ различными методами, основанными на нахождении перегибов кривых (поверхностное натяжение, электропроводность, светорассеяние и других), приведены в табл. 15. [c.335]

    Теория светорассеяния (опалесценции) для сфернчеоких, иепо-глощающих света частиц, была развита Рэлеем. В дисперсной системе в качестве неоднородности выступает частица дисперсной фазы. Под влиянием колеблюш,егося электрического поля волны [c.254]

    Одной из особенностей коллоидных растворов поверхностноактивных веществ является их способность к образованию мицелл. Молекулярный вес образующихся мицелл, так называемы мицел-лярный вес, составляет обычно несколько десятков тысяч. Значение средневесового мицеллярного веса ПАВ можно определить различными методами, которыми пользуются и для нахождения молекулярного веса полимеров. Сюда относятся методы, основанные на измерении светорассеяния растворами ПАВ и на определении диффузионной способности мицелл, а также метод седиментационпого анализа с помощью ультрацентрифуги. Наиболее эффективным и вместе с тем относительно простым методом оценки размеров коллоидных частиц в растворах является метод светорассеяния. С помощью этого метода определяют значение мицеллярного веса ПАВ в данной работе. Вывод теории светорассеяния применительно к разбавленным растворам ПАВ, содержащим мицеллы, размер которых не превышает /20 длины волны видимого света, может быть записан в следующей форме  [c.122]

    Так, исследование некоторых свойств (светорассеяние и другие) раство-ров ВМС позволяет обнаружить известную гетерогенность этих систем, а теории, основанные на представлении о макромолекуле как отдельной микрофазе, получают в настоящее время широкое признание. Общность же двух классов проявляется не только в свойствах, непосредственно связанных с размерами частиц, но и в существовании непрерывного перехода от одного класса к другому. Растворы ВМС легко превращаются в типичные гетеро- [c.17]

    Как и молекулярные растворы, коллоидные системы поглощают и преломляют свет. Вместе с этим у них особенно ярко проявляется способность к светорассеянию (опалесценции). Объясняется эта их характерная особенность соизмеримостью размеров коллоидных частиц с длиной световых волн видимой части спектра 2г X. Теория светорассеяния разработана Рэлеем. Закон Рэлея устанавливает зависимость интенсивности опалесценции / от размера частиц, концентрации и показателей преломления (при г<>.)  [c.38]

    Нефелометрический метод определения мицеллярной массы базируется на представлениях флуктуационной теории светорассеяния, развитой Эйнштейном. Согласно этой теории рассеяние света вызывают локальные микронеоднородности системы — термические флуктуации плотности и концентрации, которые, в свою очередь, вызывают флуктуации показателя преломления — локальные отклонения от его среднего значения. В результате свет, проходящий через среду, /[реломляется на границах микронеоднородностей и отклоняется от первоначального направления, т. е. рассеивается. [c.157]

    Более общее описание светорассеяния, основанное на теории Ми, показывает, что лги частиц большого размера, для которых уравнение Рэлея неприменимо, определение молекулярной массы, второго вириального коэффициента, а также получение сведений о строении молекул (конформации) возможно, если одновременно с концентрационной зависимостью наблюдать угловую зависимость интенсивности светорассеяния [c.206]

    Поправки на размер частип (см. теорию светорассеяния в разд. 13.1.3). [c.78]

    Теория светорассеяния была разработана Рэлеем (1871). Согласно уравнению Рэлея, интенсивность рассеян- [c.53]

    Используя законэмерности светорассеяния в соответствии с теорией Рэлея и ослабления светового потока в соответствии с законом Бугера — Ламберта — Бера, рассчитайте радиус частиц дивинилсти-рольного латекса (варианты I—IV) по результатам измерения оптической плотности О в кювете длиной 5,01 см при длине волны света Л  [c.129]

    Троелстра (см. Овербек, 1952) вывел зависимость между светорассеянием и временем для случая, когда кинетика флокуляции соответствует теории Смолуховского (см. ниже), а флокулированные осадки имеют такую же степень светорассеивания, что и сферы, равные по массе. По этой теории светорассеивание прямо пропорционально времени после времени полурасслаивания светорассеяние должно увеличиться в три раза. Однако эксперименты с классическими золями установили, что светорассеяние увеличивается в меньшей степени, чем предсказывалось теорией. Эти отклонения, по сравнению с линейной зависимостью (кривая вогнута к оси времени) показали, что агрегаты рассеивают меньше света, чем сферы равной массы из-за деструктивной интерференции. В самом деле, нри определенных условиях, чем быстрее флокуляция золя, тем более открытой является структура флокулировапного осадка и тем меньше рассеивание света. [c.103]

    Теория, применяемая указанными выше авторами, ограничивается описанием монодисперсных золей. Она основывается на теории коагуляции (которая рассматривается ниже) и на предположении, что дуплеты, триплеты и т. д. рассеивают свет, как сферы равного объема, которое не совсем правильно. Оттевилл и Шоу смогли сравнить метод светорассеяния с методом счета, используя монодисперсный латекс с частицами диаметром 0,4 мкм и получили хороп[ее согласие между обоими методами. [c.104]

    Теория светорассеяния была развита лордом Рэлеем для сферических, не поглощающих свет, не проводящих частиц. При прохождении световой волны переменное во времени электромагнитное поле вызывает их поляризацию. Возникающие диполи с переменными электромагнитными моментами являются источниками излучения света. В однородной среде свет, излучаемый всеми диполями, вследствие интерференции распространяется только в первоначальном направлении, согласно принципу Гюйгенса. Если же в среде имеются неоднородности с другим показателем преломления, например, коллоидные частицы или системы с флуктуациями плотности (обусловленные ассоциатами молекул или отдельными макромолекулами), дипольные моменты приобретают в этих узлах иную величину и испускают неском-пенсированное излучение в форме рассеянного света. Момент диполя зависит от частоты, иначе говоря от длины волны X. Таким образом, интенсивность светорассеяния I должна быть функцией показателей преломления дисперсной фазы 1 и дисперсионной среды о, длины волны X, объема частицы V, поскольку поляризация—объемное свойство, а также от частичной V или весовой Сй = vУii. концентрации и, наконец, от интенсивности падающего света Я  [c.38]

    Так, исследооанке некоторых свойств (светорассеяние и другие) растворов ВМС позволяет обнаружить известную гетерогенность этих систем, а теории, основанные на представлении о макромолекуле как отдельной микрофазе, получают в настоящее время широкое признание. Общность же двух классов проявляется не только в свойствах, непосредственно связанных с размерами частиц, но и в существовании непрерывного перехода от одного класса к другому. Растворы ВМС легко превращаются в типичные гетерогенные золи при непрерывном, часто незначительном изменении состава среды. Так, белок, растворенный в воде до молекул, при добавлении спирта переходит в лиофобный золь при непрерывном изменении состава с реды. [c.16]

    Теория Смолуховского неоднократно подвергалась экспериментальной проверке путем подсчета числа частиц в единице объема ультрамикроскопически (например, посредством поточного ультрамикроскопа с построением кривых V — I, либо методом светорассеяния с использованием формулы Рэлея (IV. 1). [c.239]

    Теория хорошо согласуется с опытом. Экспериментальные значения констант, найденные по измерениям ККМ различными методами, основанными на нахождении перегибов кривых (поверхностное натяжение, электропроводность, светорассеяние и других), приведены в табл. XVII. 1. [c.322]

    Рэлей и позднее Мандельштам и Дебай дали основы теории светорассеяния на неоднородностях среды. Жигмонди в 1903 г. предложил ультрамикроскоп. М С. Цвет (в Варшаве) стал создателем адсорбционной хроматографии. А. В. Думанский, которого по праву можно назвать дедушкой русской коллоидной химии , стал основателем нашего Коллоидного журнала и организатором первых коллоидно-химических [c.10]

    Многие макроскопические характерпстики разветвленных полимеров определяются, помимо первично структуры молекул, пространственным расположением их звеньев. Так, например, при расчете средних размеров макромолекул, их гидродинамического радиуса пли интенсивности светорассеяния требуется проводить усреднение по вероятностной мере, которая учитывает не только способы химической связи фрагментов между собой, но и их взаимное расноложение в пространстве. Такая мера является необходимой для создания корректной теории формирования полимерных сеток с учетом внутримолекулярных реакций циклообразовапия. [c.146]

    Исследование термодинамических флуктуаций ведет свое начало с работ Смолуховского (1908) и Эйнштейна (1910), посвященных теор ии рассеяния света на тепловых флуктуациях плотности. К возникновенню флуктуаций плотности в жидкости приводит статистический характер теплового движения молекул. Релеевское светорассеяние вызывают флуктуации плотности и ориентаций в объемах, малых по сравнению с длиной световой волны. [c.148]

    Теория флуктуациоииого рассеяния света была развита Эйнштейном (1910) и особенно плодотворно применена для растворов макромолекул Дебаем (1947). В настоящее время измерения светорассеяния являются одним из наиболее важных методов исследования растворов белков и высокополимерных веществ. [c.56]

    Наличие глобул в эпоксидных системах может быть связано с гетерогенностью процесса отверждения [1]. Светорассеяние отверждающихся эпоксидных систем начинает возрастать уже прн малых степенях превращения, задолго до точки гелеобразо-вания. По-видимому, в начале процесса в расплаве образуются более плотные структурные образования (кластеры), которые растут беспрепятственно до взаимного соприкосновения, после чего возникают стерические затруднения для продолжения образования пространственной сетки [1]. Как показано в [I, 51 — 53], в этом случае как исходные вещества, так и в еще большей степени продукты реакции склонны к ассоциации, что может облегчить кластерообразование в растворе и появление гетерогенности на ранних стадиях процесса отверждения. Таким образом, при отверждении в полимере возникают области с более плотной упаковкой, которые могут наблюдаться в виде глобул, и области с неравновесной упаковкой и напряженными цепями, представляющие собой межглобулярное пространство. Если это предположение правильно, то размеры глобул долл<ны сильно зависеть от условий отверждения и типа полимера, что не подтверждается экспериментальными данными [I]. Если в той и другой областях степень превращения, химическое строение полимера, значение Мс и структура пространственных циклов одинаковы, то фактически эта точка зрения мало отличается от флуктуационноп теории, которая предполагает наличие в пространственной сетке чередующихся областей с разной плотностью упаковки цепей, способных к перестройке без химических перегруппировок. [c.60]


Смотреть страницы где упоминается термин Светорассеяние теория: [c.222]    [c.222]    [c.17]    [c.304]    [c.113]    [c.277]    [c.40]    [c.40]    [c.170]    [c.12]    [c.196]   
Практическое руководство по определению молекулярных весов и молекулярно-весового распределения полимеров (1964) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Рэлея теория светорассеяния

Теория светорассеяния Релея

Эйнштейна теория светорассеяния



© 2025 chem21.info Реклама на сайте