Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы вязкость

    V.9.I. Рассчитать средний сдвиг X сферических частиц песка в воде (т. е. смещение за 1 с за счет теплового движения) и скорость седиментации прн следующих условиях температура 7 = 293 К, вязкость дисперсионной среды -п=1-10 з Па-с плотность песка р = 210 кг/м , плотность дисперсионной среды p = Ы 0 кг/м . Сравнить седиментационную устойчивость дисперсных систем с размерами частиц 10 м (грубодисперсная система) и 10 м (коллоидная система). [c.123]


    Скорость диффузии прн постоянных температуре и вязкости среды зависит от величины н формы частиц. Медленность диффузии является признаком, отличающим коллоидные системы от истинных растворов низкомолекулярных веществ. [c.319]

    С другой стороны, неприменимость уравнения Эйнштейна к коллоидным системам может быть связана и с проявлением сил отталкивания между частицами, несущими одноименный электрический заряд. Согласно Смолуховскому, вязкость золей с заряженными частицами выше вязкости золей с незаряженными частицами. Повышение вязкости в результате наличия на поверхности частиц двойного электрического слоя называется электровязкостным эффектом. [c.338]

    Вискозиметр Куэтта. Этот вискозиметр очень удобен для наблюдения за изменениями вязкости во времени. Такие изменения — частое явление в коллоидных системах, что может быть обусловлено, например, коагуляцией. Вискозиметр Куэтта состоит из цилиндра, подвешенного на тонкой упругой нити, к которой прикреплено зеркальце с помощью последнего определяется угол поворота. Указанный цилиндр концентрически опускается во внутрь другого цилиндрического сосуда, заполненного исследуемой жидкостью. Внешний цилиндр вращается с постоянной скоростью, и увлекаемая им жидкость поворачивает внутренний цилиндр до тех пор, пока торсионная сила не сравняется с силой трения. При этом угол поворота пропорционален вязкости жидкости. Сравнивая углы поворота внутреннего цилиндра для двух разных жидкостей при вращении внешнего цилиндра с постоянной скоростью, можно определить вязкость одной жидкости, если известна вязкость другой. [c.70]

    Следует, однако, отметить, что твердые коллоидные системы не обладают всеми перечисленными выше типичными коллоидными свойствами. Так, все твердые коллоидные системы в обычных условиях агрегативно устойчивы. Это объясняется только огромной вязкостью этих систем, не позволяющей передвигаться частицам растворенного вещества и образовывать, более крупные агрегаты в результате слипания. При плавлении же этих систем может проявляться их агрегативная неустойчивость. Металлические сплавы не обладают также опалесценцией. Но это обусловливается лишь непрозрачностью металла. Другие твердые коллоидные системы, дисперсионная среда которых прозрачна (например, рубиновое стекло, опал), заметно опалесцируют. Недаром явление опалесценции получило свое название от минерала опала. , [c.13]


    О ходе коагуляции можно судить по изменению вязкости коллоидной системы. Вязкость раствора будет тем больше, чем больше объем передвигающихся с жидкостью частиц и чем меньше свободного растворителя. Эйнштейн дал следующую формулу, связывающую вязкость с изменением отношения объемов дисперсной фазы и всего объема раствора  [c.379]

    К более слабым проявлениям тиксотропии можно отнести и соответствующие изменения вязкости коллоидной системы, хотя бы они и не приводили к переходу геля в золь и обратно. [c.527]

    Механические свойства консистентных смазок, поскольку они являются коллоидными системами, не могут быть определены однозначно какой-либо одной величиной даже нри заданных температуре и давлении. Для всех коллоидных систем типична так называемая структурная вязкость (внутреннее трение), изменяющаяся с изменением градиента скорости. Для пластич- [c.698]

    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]

    Исходя из коллоидных свойств смолисто-асфальтеновой части нефтей, в которых асфальтены диспергированы в мальтенах, т. е. в углеводородно-смолистой среде, пытаются объяснить такие важные свойства технических битумов, как вязкость и реологические свойства [18]. При этом исходят из положения, что коллоидные системы определенной структуры подчиняются строгим закономерностям, в силу которых вязкостные и реологические свойства, а следовательно, и физико-механические эксплуатационные свойства битумов определяются формой, размером и концентрацией частиц, образующих ту или иную коллоидную систему. [c.76]

    Наибольшее практическое значение имеют структурно-механические, или реологические, свойства буровых жидкостей. Специфика коллоидно-дисперсных и микрогетерогенных систем предопределяет их промежуточное положение между истинно твердыми и истинно жидкими телами. Они обладают вязкостью, пластичностью, упругостью и прочностью. Важнейшей особенностью коллоидных систем является аномалия вязкости. Их вязкость не является постоянной величиной, а зависит от градиента скорости. Для многих коллоидных систем, образующих пространственные структуры, характерно наличие предела текучести, т. е. напряжения сдвига, ниже которого движение не происходит. Аномалия обусловлена наличием в коллоидных системах структурных сеток, образуемых дисперсной фазой. [c.5]

    Как можно видеть, коэффициент диффузии прямо пропорционален абсолютной температ] фе и обратно пропорционален вязкости среды и радиусу частиц. Поскольку размеры коллоидных частиц очень велики по сравнению с размерами обычных молекул, коэффициент диффузии в коллоидных системах мал. [c.61]

    Помимо этого для проверки правильности уравнения Эйнштейна — Смолуховского Сведберг определял зависимость Д от. вязкости дисперсионной среды коллоидной системы. В этом случае для вычисления теоретического значения Д он пользовался [c.64]

    Согласно уравнению Смолуховского, вязкость коллоидных систем при введении электролитов должна уменьшаться как вследствие снижения -потенциала, так и в результате увеличения электропроводности межмицеллярной жидкости. В изоэлектрическом состоянии золя (при = 0) уравнение Смолуховского переходит в уравнение Эйнштейна. Следует, однако, отметить, что при астабилизации коллоидной системы введением в нее электролита (вследствие уменьшения сил отталкивания между частицами в золе) возможны явления агрегации частиц, приводящие к образованию структур, и появлению структурной вязкости, что не предусмотрено уравнением Смолуховского. В результате этого понижение -потенциала частиц золя в определенных условиях может не только не вызывать понижения вязкости золя, но и обусловить ее повышение. [c.339]

    Это уравнение показывает, что коэффициент диффузии (или скорость диффузии) обратно пропорционален размеру диффундирующих молекул или частиц. Вполне естественно поэтому, что скорость диффузии в коллоидных системах в сотни и тысячи раз меньше, чем скорость диффузии молекул в истинных растворах и в газовых смесях. Из этого же уравнения видно, что скорость диффузии возрастает с повышением температуры и уменьшается с повышением вязкости растворителя или дисперсионной среды. [c.23]


    Броуновское движение является причиной диффузии частиц в коллоидных системах. Диффузия — самопроизвольное выравнивание концентраций — наблюдается в любых дисперсных системах, частицы которых находятся в движении. Скорость диффузии пропорциональна разности концентраций и температуре, обратно пропорциональна вязкости дисперсионной среды и размеру диффундирующих частиц. В коллоидных системах, частицы которых имеют размеры порядка 10 —10 см, т. е. значительно больше молекул низкомолекулярных веществ, скорость диффузии очень невелика и значительно меньше, чем скорость диффузии в молекулярных или ионных растворах. [c.191]

    Гелеобразные системы являются коллоидными системами и характеризуются определенными реологическими свойствами вязкостью гелеобразующего раствора, предельным напряжением разрушения (прочностью) образовавшегося из него геля 0 и модулем упругости геля С. [c.234]

    Смолы и асфальтены, находясь в нефти, образуют систему, обладающую коллоидными свойствами. Вязкость такой системы сильно зависит от концентрации дисперсной фазы, в данном случае — от концентрации смол и особенно асфальтенов [3, 4,11]. Естественно, что увеличение содержания смол и асфальтенов в нефти, которое наблюдается с приближением к водо-нефтяному контакту, сопровождается увеличением вязкости нефти. [c.35]

    Известно, что водорастворимые полимеры стабилизируют коллоидные системы за счет образования структурированных адсорбционных слоев и увеличения вязкости дисперсионной среды. При адсорбции полимера одновременно на нескольких частицах образуются крупные агрегаты. При низких концентрациях полимера вязкость жидкости мала, что способствует быстрому образованию и оседанию агрегатов (броуновское движение не затруднено), значит, такие дозировки полимера снижают устойчивость системы. На рис. 3.3 показано влияние добавки полиакриламида на дисперсность бентонита. При концентрации 0,01 % ПАА действует как флокулянт, и в системе преобладают крупные (10...40 мкм) агрега- [c.68]

    Некоторыми исследователями сделан вывод о возможности стабилизации эмульсий ненасыщенными слоями стабилизатора, представляющими собой подобие двумерного газа из ориентированных дифильных молекул. Ненасыиденность таких слоев, имеющая место и в латексных системах дала повод в данном случае усомниться в стабилизирующем действии структурно-механического фактора, тем более, что проведенные измерения не показали наличия структурной и даже просто повышенной вязкости оболочек из поверхностно-активных веществ на межфазной границе. Кроме того, показано, что стабильные эмульсии могут быть получены при помощи эмульгаторов (некаль, триэтаноламин), заведомо не способных давать механически прочные адсорбционные пленки. И, наконец, если бы устойчивость эмульсий обуславливалась только структурно-механическим фактором, невозможно было бы наблюдаемое в ряде экспериментов соблюдение известного правила электролитной коагуляции Шульце—Гарди. С. М. Леви и О. К. Смирновым обнаружено отсутствие в широких пределах связи между длиной углеводородного радикала молекулы эмульгатора и стабильностью коллоидной системы, что также говорит против объяснения устойчивости эмульсий только образованием на поверхности глобул механически прочного адсорбционного слоя. [c.12]

    Очень широкий диапазон значений вязкости (от 10 Па-с у газов до 10 Па с у стеклующихся жидкостей), необходимость выполнения измерений при разных т-рах и давлениях, а также для сред с разл. св-вами (сжиженные газы, агрессивные к-ты и щелочи, расплавленные металлы и соли, полимеры, коллоидные системы и др.) [c.377]

    Рассмотрим агрегатную форму процесса кристаллизации парафинов. Явление агрегатной кристаллизации наблюдается в основном для высококипящих мелкокристаллических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Высококипящие высокомолекулярные парафины дают при кристаллизации весьма мелкую кристаллическую структуру. По величине образуюпщеся кристаллики парафина приближаются, особенно для многих тяжелых продуктов остаточного происхождения, к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кристалликов парафина, проявляют ряд свойств, присущих коллоидным системам, — нанример аномалию вязкости, дают явления, аналогичные гелеобразованию, и др. К числу таких свойств относится способность микрокристаллической взвеси собираться нри определенных условиях в скопления или агрегаты, как это происходит нри коагуляции коллоидных растворов. Одной из причин такой коагуляции (точнее агрегации) является выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих ч оединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют такж . и электростатические явления. [c.74]

    Структуры, образующиеся в темных нефтепродуктах, при низких температурах могут быть результатом понижения степени дисперсности асфальтенов. Наиболее резко аномалия вязкости наблюдается при исследовании нефтепродуктов, содержащих, помимо парафинов, смолистые вещества, влияющие на изменение характера кристаллизации парафинов и физико-химической связи между углеводородами, входящими в состав жидкой фазы, и кристаллами парафина. Эта связь приводит к образованию структур, по характеру своему приближающихся к коллоидным системам, для которых явления аномалии вязкости наиболее типичны. Исследование вязкости парафинистых мазутов, произведенное Б. Г. Тычининым, а также автором показало, что  [c.45]

    Пластичные (консистентные) смазки представляют собой пластические коллоидные системы. Это особый класс смазочных материалов, приготавливаемых путем введения в смазочные масла специальных, главным образом твердых, загустителей, ограничивающих их текучесть. Большинство консистентных смазок п широком интервале температур ведет себя как твердые упругие тела. Они приобретают способность необратимо деформироваться (течь), если приложенная сила больше предела текучести смазки. С повышением температуры предел текучести консистентных смазок понижается и при некоторой, определенной для каждой смазки температуре становится равным нулю (смазка течет). Вторым характерным признаком консистентных смазок, отличающим их от смазочных масел, является аномальное внутреннее трение, в отличие от нормальных н идкостей, зависящее от условн течения (структурная вязкость). Эти свойства консп-стентных смазок связаны с их коллоидной природой и структурой. [c.146]

    Явление агрегатной кристаллизации наблюдается в основном у высококипящих мелкокристалл ических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Как уже отмечалось выше, высококипящие высокомолекулярные парафины образуют при кристаллизации мелкую кристаллическую структуру. По величине образующиеся кристаллики парафина приближаются (особенно для многих тяжелых продуктов остаточного происхождения) к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кргисталликов парафина, характеризуются некоторыми свойствами, присущими коллоидным системам. Например они проявляют аномалию вязкости, способны к явлениям, аналогичным гелеобразованию, и др. К таким свойствам относится и способность микрокристаллической взвеси образовывать в определенных условиях агрегаты, как это происходит при коагуляции коллоидных растворов. Одна из причин такой агрегации — выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих соединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют и электростатические явления. [c.93]

    В самом деле, если пуск двигателя проводят при очень низких температурах, то на практике это может привести к тому, что масла с высоким индексом вязкости могут вовсе потерять свою подвижность в результате образования пластической коллоидной системы из сольватированных маслом кристаллов парафина и жидкого масла, в то время как масла с низким индексом могут ее сохранить. Но вместе с тем при высоких температурах, развивающихся в двигателях внутреннего сгорания, вязкости различных масел будут весьма малы и примерно одинаковы. На это указывает ход температурных кривых вязкости различных масел (рис. XI. 6). Поэтому при очень высоких температурах вязкость, очевидно, у ке не играет столь заметной роли и уступает место смазывающей способности, так как, по-видимому, в этих случаях смазка осуществляется при помощи тончайшего слоя, может быть, мономолекулярпого. [c.265]

    Т1Щ0= 1,002-Па-с при 293 К и 8,902-10- Па-с при 298 К). Некоторые коллоидные системы (золи и суспензии с асимметричными частицами, эмульсии и др.) и растворы ВМВ не подчиняются уравнениям Ньютона и Пуазейля. Их называют аномально вязкими или неньютоновскими (рис. 24.2, кривая 2). На участке АВ течение отсутствует вследствие упругого сопротивления образовавшейся в растворах ВМВ структуры и система ведет себя как твердое тело. Когда давление станет больше ре, структура разрушается и система начинает течь на участке ВС. Разрушение структуры прогрессирует, эффективная вязкость падает с ростом давления и в точке С достигает постоянного минимального значения, соответствующего наиболее полному разрушению структуры и оптимальной деформации ВМВ. По наклону линейного участка СО находят наименьшую пластическую вязкость исследуемой системы  [c.224]

    В заключение необходимо хотя бы кратко остановиться на явлениях старения растворов высокомолекулярных веществ. Принято считать, что старение наглядней всего проявляется в спонтанном (самопроизвольном) изменении вязкости равновесных растворов. Ранее, когда к растворам высокомолекулярных веществ подходили с тех же позиций, что и к коллоидным системам, эти изменения вязкости объясняли медленно протекающими явлениями пептизации или, наоборот, агрегирования. В настоящее время, когда установлена гомогенность не слишком концентрированых растворов высокомолекулярных веществ, такое объяснение не может быть признано удовлетворительным. [c.467]

    Связаннодисперсные системы, обладающие в некоторой степени свойствами твердого тела, не следует смешивать с системами, имеющими твердую дисперсионную среду, у которых частички также не способны перемещаться относительно друг друга, так как вязкость дисперсионной среды огромная. Приведенная классификация применима не только к коллоидным системам, но и к растворам высокомолекулярных веществ. [c.18]

    Согласно Тамману и Веймарну, образование дисперсной фазы в коллоидной системе при конденсации связано с двумя различными процессами возникновением зародышей (первичных частиц) и их последующим ростом. Зародыши могут возникать только при определенной степени пересыщения раствора. Их появление зависит от многих причин химических свойств реагирующих веществ, характера ассоциации атомов и молекул, вязкости среды, температуры и др. Зародыши захватывают вещество из раствора и продолжают расти до тех пор, пока не исчезнет пересыщение. Процесс роста связан со скоростью отложения растворенного вещества на зародышах и зависит иногда от скорости диффузии к поверхности частиц. [c.106]

    Более разнообразные возможности в отнощении стабилизации имеют дисперсные системы с жидкой дисперсионной средой — пены, эмульсии, золи и суспензии. Природа устойчивости всех систем в значительной степецн зависит от фазового состояния дисперсной фазы. Так, пены, подобно аэрозолям, принципиально лиофобны, но в отличие от аэрозолей могут быть эффективно стабилизованы введением ПАВ. Эмульсии и до некоторой степени золи по свойствам могут быть близки к термодинамически устойчивым лиофильным коллоидным системам, и их стабилизация с помощью ПАВ може обеспечить высокую устойчивость системы. В системах с твердой дисперсионной средой все процессы изменения дисперсности затруднены высокой вязкостью дисперсионной среды и малы] 1и значениями коэффициентов диффузии компонентов. [c.328]

    Реологические исследования нефтей, содержащих асфальтены, показали, что при концентрациях последних 1,5% и более наблюдаются аномалии вязкости, свойственные коллоидным системам [47, 112, 119]. На фотоснимках агрегатов асфальтенов, имеющп.с размеры около 2 мк, видно, что они имеют зернистое строение и, следовательно, образование агрегатов является следствием ассоциации более мелких частиц. Форма мелких зерен неправильная. Размеры самых малых частиц 200—300 А [114]. Агрегаты состоят пз зерен с размерами частиц от 50 до 100 А. [c.30]


Смотреть страницы где упоминается термин Коллоидные системы вязкость: [c.331]    [c.699]    [c.91]    [c.39]    [c.198]    [c.206]    [c.436]    [c.445]    [c.221]    [c.43]    [c.436]   
Курс коллоидной химии (1976) -- [ c.335 ]

Физико-химия коллоидов (1948) -- [ c.75 ]

Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.181 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.519 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость дисперсных и коллоидных систем

ГЛАВА vui Вязкость и пластичность коллоидных растворов и растворов высокомолекулярных соединений Общие понятия о деформации и течении дисперсных систем

Зависимость вязкости коллоидных систем от концентрации дисперсной фазы

Зависимость эффективной вязкости коллоидных систем от скорости течения

Определение напряжения сдвига и структурной вязкости коллоидных систем методом капиллярной вискозиметрии

Системы коллоидные



© 2025 chem21.info Реклама на сайте