Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрофобные полимеры

    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]


    Гидрофобные полимеры обладают комплексом свойств, обусловленных весьма малым количеством полярных групп, способных взаимодействовать с водой и электролитами. К числу этих свойств относятся малая сорбция воды и электролитов, высокое электрическое сопротивление и низкая диэлектрическая проницаемость. При увлажнении электрические характеристики гидрофобных полимеров практически не изменяются Этот комплекс свойств приводит к тому, что перенос электролитов через пленки гидрофобных полимеров подобен переносу газов. Прп сопоставлении величин проницаемости [c.212]

    Газочувствительные электроды (датчики) не относятся к истинно мембранным электродам, поскольку через мембрану не протекает электрический ток. Они представляют собой устройства из двух электродов, индикаторного и электрода сравнения, и раствора электролита, помещенных в пластиковую трубку (рис. 6.7). К концу трубки прикрепляется газопроницаемая мембрана (аналогичная мембране для диализа), служащая для отделения внутреннего раствора от анализируемого. Поры мембраны вследствие ее водоотталкивающих свойств заполнены воздухом или другими газами и не содержат воды. Обычно газопроницаемые мембраны имеют толщину 25-100 мкм. Их изготавливают из гидрофобных полимеров (силоксановый каучук, полипропилен, фторполимеры и др.). Термин датчик используется в этом случае потому, что система представляет собой полностью собранную электрохимическую ячейку со всеми присущими ей свойствами. [c.210]

    Примером прививки к гидрофобному полимеру гидрофильных ответвлений является синтез привитого сополимера полистирола и окиси этилена. Предварительно проводят сополимеризацию стирола с небольшим количеством винилацетата, затем подвергают гидролизу винилацетатные звенья. [c.548]

    Развитие методов синтеза таких сополимеров значительно расширяет возможности получения полимерных материалов с разнообразными свойствами, так как становится возможным сочетать в одной молекулярной цепи участки природных и синтетических, гибких и жестких, гидрофильных и гидрофобных полимеров, полученных различными методами. Блок-сополимеры и привитые сополимеры уже довольно широко используются в промышленности пластических масс, синтетических каучуков и синтетических волокон. [c.201]

    Сульфоны Д. и нек-рых его производных увеличивают адсорбцию дисперсных красителей гидрофобными полимерами. Д. и его арилпроизводные применяют как диэлектрич. и гидравлич. жидкости. [c.49]


    На таком электроде пленка жидкости постоянно движется вследствие испарения воды из раствора и возникающего вдоль пленки градиента поверхностного натяжения. При этом раствор вначале поднимается по электроду, затем попадает в линзы, находящиеся на 1—2 мм выше мениска и представляющие собой капельные образования сконцентрированного электролита. Линзы увеличиваются в объеме и под давлением силы тяжести стекают в мениск Зону реакции между мениском и линзой можно в несколько раз увеличить, если в качестве катализатора использовать тонкую платиновую сетку, покрытую пористой пленкой гидрофобного полимера в контакте с подложкой из гидрофильного мате-.риала Использование указанного способа позволит увеличить скорость реакции на два порядка в лабораторных условиях достигнута скорость реакции 40-10 моль/(ч-см2) [c.141]

    Перенос электролитов через пленки гидрофобных полимеров [c.212]

    Характерной особенностью гидрофобных полимеров является различие в проницаемости по отношению к летучим и нелетучим электролитам 2 Проницаемость для нелетучих электролитов по крайней мере на три порядка ниже проницаемости для летучих электролитов. Низкая проникающая способность нелетучих электролитов объясняется малой сорбцией их неполярными полимерами. Это явление аналогично малой растворимости электролитов в неполярных жидкостях. Согласно приближенным термодинамическим оценкам, константа распределения азотной кислоты между бесконечно разбавленным водным раствором и полиэтиленом НП более чем на четыре порядка превышает константу распределения для серной кислоты. Добавка полярных растворителей в водные растворы нелетучих электролитов резко повышает проницаемость гидрофобных полимеров, однако количественно это явление не изучено. При использовании весьма чувствительной методики позволявшей определять проницаемость порядка г/(см-ч-мм [c.213]

    Перенос летучих электролитов через пленки гидрофобных полимеров протекает по механизму диффузионной проницаемости и в условиях стационарного процесса подчиняется общим закономерностям переноса газов. Проницаемость Р таких пленок может быть описана уравнением, одинаково справедливым для диффузии электролита из сухого газа или из водного раствора 2  [c.214]

    Полимеры первой и второй групп обычно относят к гидрофильным, а полимеры третьей группы — к гидрофобным полимерам. [c.8]

    Перенося это представление в область морфологии латексных частиц, можно в первом приближении полагать, что в случае полностью гидрофобных полимеров (полистирол) конформация макромолекул, концентрирующихся в процессе синтеза в сердцевине частиц, будет в основном определяться их межмолекулярным и внутримолекулярным взаимодействием. Однако при наличии в полимерах полярных групп они будут приближаться к поверхности раздела, и на конформацию макромолекул будут влиять возникающие при этом взаимодействия. С этих позиций можно объяснить различие между конформацией макромолекул полистирола (см. рис. 3.26) и поливинилацетата (см. рис. 3.27). [c.152]

    Известно, что из трех полимеров — желатины, полистирола и полиметилметакрилата — наибольшую адгезионную прочность при неравновесном разрушении дает желатина. Адсорбция же желатины из растворов на поверхности стекла наименьшая. Фактически эти данные нельзя сравнивать, ибо адгезионная прочность обусловлена здесь другими причинами. Сопротивление разрыву в системе стекло— желатина — стекло превышает прочность склеек стекло — полистирол — стекло, во-первых, потому, что слабый граничный слой между влажной поверхностью стекла и желатиной (гидрофильным полимером) менее вероятен, чем между этой поверхностью и гидрофобным полимером а во-вторых, потому, что когезионная прочность желатины обычно выше, чем полистирола, и при механическом нарушении склейки полистирола происходит когезионный отрыв. Как видно из этого примера, ни тот, ни другой случай не имеет прямого отно- [c.173]

    Важнейшими свойствами полимеров, определяющими их технологические качества, являются лиофоб-ность ( боязнь растворителя) и лиофильность ( любовь к растворителю). Полимеры не растворяются в веществах, к которым они лиофобны гидрофобные полимеры нерастворимы в воде и других полярных растворителях, а олеофобные — нерастворимы в углеводородах нефти. Растворение полимеров возможно лишь в тех растворителях, к которым они лиофильны гидрофильные полимеры могут быть растворены в воде и других полярных растворителях, а олеофиль-ные — растворимы в нефтепродуктах. [c.218]

    Линейные полимеры могут растворяться в соответствующих растворителях. Иапример, гидрофобные полимеры каучук и полистирол растворимы в углеводородах, а гидрофильный полиакриламид растворим в воде. Растворы полимеров характеризуются повышенной вязкостью по сравению с вязкостью растворителя. Вязкость тем выше, чем выше концентрация полимера и чем больше его средняя молекулярная масса. Принято характеризовать вязкость, которую растворение полимера сообщает раствору, так называемой характеристической вязкостью [т]]  [c.144]


    Поскольку отрезки разнородных по химическому составу звеньев в блок- и привитых сополимерах достаточно велики, то эти сополимеры проявляют свойства обоих исходных компонентов. Например, прививка поливинилацетата к политетрафторэтилену придает последнему адгезионные свойства и опоообность к окрашиваиию (свойства, характерные для поливинилацетата), сохраняя при этом высокую температуру плавления исходного полимера. Химическое соединение аморфных и кристаллических полимеров, гидрофильных и гидрофобных полимеров и т. п. позволяет получать материалы с новыми свойствами, которыми не обладают механические смеси гомополимеров. [c.90]

    Механизм переноса электролитов в полимерах определяется отношением полимера к воде, т. - е. его способностью к водопоглощению, обусловливаемой химической природой полимера. Для гидрофобных полимеров, содержащих небольшое количество полярных групп, характерна незначительная сорбция воды и электролитов, поэтому их высокое УОЭС и низкая диэлектрическая проницаемость сохраняются и при увлажнении. По современным воззрения перенос электролитов трактуется как процесс диффузионной проницаемости , [c.25]

    Процесс диффузии химически активных сред в гидрофобные полимеры в общем случае описывается системой уравнений Фика до тех пор, пока не произойдут существенные изменения диффузионных характеристик иолпмера. При этом в зависимости от соотношения между скоростью диффузии среды и скоростью химической деструкции полимера различают три области иротекаиия процесса его деструкции  [c.39]

    При получении материалов, изменяющих при нагрев, прозрачность, применяют полимеры (напр., сополимер винилхлорида с акрилонитрилом и вииилацетатом), в к-рых под действием тепла происходит перестройка надмол. структуры. Теплочувствит. слой материалов, у к-рых при нагрев изменяется гидрофильность или р-римость, иолучают из дисперсии гидрофобного полимера в водорастворимом связующем с добавками ПАВ, повышающих гидро-фильиость слоя. При нагрев, гидрофобный полимер сополимеризуется со связующим, в результате чего нагретые участки теряют р-римость и после проявлеийя водой образуют вымывной рельеф. [c.566]

    Выбор сорбентов, обеспечивающих оптимальные условия для решения конкретной аналитической задачи, проводят в несколько этапов. Первоначально на основе данных о химическом составе или растворимости анализируемых веществ устанавливают, какой вариант процесса следует применить — хроматографию в водных системах или в органических растворителях, что в значительной степени определяет тип необходимого сорбента. Разделение веществ низкой и средней полярности в органических растворителях можно успешно осуществить как на полужестких, так и на жестких гелях. Исследование ММР гидрофобных полимеров, содержащих полярные группы, чаще проводят на колонках со стирол-дивинилбензольными гелями, так как в этом случае практически не проявляются адсорбционные эффекты и не требуется добавка модификаторов к подвижной фазе, что значительно упрощает подготовку и регенерацию растворителя. [c.44]

    В условиях эксплуатации часто оказывается возможным увлажнение армируюн1его материала, и такое важное свойство, как влагостойкость (сохранение прочн К ти при увлажнении), определяется гидрофобностью полимера волокна  [c.10]

    ВЛАГОПРОНИЦАЕМОСТЬ полимеров, способность полимерных материалов пропускать водяные пары при наличии перепада давления последних. Зависит от хим. состава и структуры полимера, концентрации воды в нем и т-ры. Коэф. В. (Й ) определяется массой паров воды, прошедшей в единицу времени через единицу площади прн единичных толщине и перепаде давления водяных паров связан с коэф. р-римооти (5) и коэф. диффузии (О) ур-нием W= = 03, Диффузия паров воды в гидрофобных полимерах (полиолефинах, фторопластах, фенопластах и др.) происходит так же, как диффузия инертных газов (см. Газопроницаемость). Гидрофильные полимеры (напр., целлюлоза, поливиниловый спирт, полиамиды) содержат полярные группы, способные образовывать с водой водородные связи. Коэф. диффузии таких полимеров зависят от содержания в них воды. Изменение О с содержанием воды в полимере м.б. оценено с хорошим приближением по формуле  [c.391]

    Газочувствительные потенциометрические сенсоры включают электрохимическую ячейку с ион-селективным электродом и электродом сравнения. Оба они погружены в раствор внутреннего электролита. Внутренний электролит отделен от анализируемого раствора с помощью газопроницаемой мембраны (рис. 7.7-1). Микропористая или гомогенная мембрана имеет обычно толщину 0,1 мм. Микропористые мембраны изготавливают из гидрофобных полимеров, например, политетрафторэтилена (ПТФЭ) или полипропилена. В таких мембранах 70% пор имеют диаметр менее 1мкм, так что газы могут проникать за счет эффузии, тогда как вода или ионы отталкиваются гидрофобной мембраной. [c.498]

    Контактные линзы являются оформленными структурами. Ког рентная система - это ковалентно кросс-связанный гидрофильный ш гидрофобный полимер, структура которого позволяет удерживать boj водные растворы или твердые компоненты. Полимерная сетка состо] из повторяющихся единиц одних и тех же или различных мономе] образующих длинные цепи. Эти цепи соединены вместе внутренни мостиками или кросс-линиями, которые ответственны за когерентну структуру системы. Такие кросс-линейные системы не растворяются, могут набухать, абсорбируя воду. [c.402]

    Сополимеры стирола и дивинилбензола (ДВБ), этилвинилбензола и ДВБ и т. п. Гидрофобные полимеры-гели, избирательно поглощающие липофильны вещества, а также обладающие молекулярно-ситовыми свойствами. [c.172]

    Гравиметрический метод целесообразно использовать только для однокомпонентной агрессивной среды. Для многокомпонентных смесей возможна сорбция разных компонентов с различными скоростями, например, сорбция растворов нелетучих электролитов гидрофобными полимерами. [c.21]

    Интересно, что этот эффект установлен на примере гидрофобных полимеров (ПЭТФ, УПС) широко используемых в качестве упаковочных материалов в пищевой промышленности, а также в медицине и биотехнологии. [c.110]

    ПАВ используется для изготовления увлажняющих салфеток. В одноразовых салфетках требуется наличие общей емкости для влагоноглощения и быстрого заполнения капилляров. Емкость обеспечивается целлюлозными волокнами, а быстрое впитывание — добавлением ПАВ (благодаря его смачивающим свойствам). В данную группу входят этоксилаты октилфенола и сложные эфиры фосфорной кислоты, которые могут быть использованы для обработки поверхностей, либо включены в древесную массу в виде конечного слоя покрытия. В некоторых случаях такая обработка заменяется использованием целлюлозы с привитыми на ее поверхность сильно гидрофобными полимерами (например, полиакрилатами). [c.103]

    В соответствии с представлениями о структуре искусственной кожи с гигиеническими свойствами [1] в качестве пленкообразующего были выбраны гидрофильные полимеры — карбоксилсодержащие каучуки с высокими физико-механическими показателями, а для порообразования был использован метод вымывания водорастворимых солей, примененный впервые в 1944 г. П. Ф. Сапилевским при получении пористых поливинилхлоридных покрытий [2]. Отсутствие в те годы научно обоснованных требований к структуре искусственной кожи с гигиеническими свойствами и небольшой экспериментальный материал, касавшийся процесса порообразования, ограничивали его возможности. Создание грубых сквозных пор в гидрофобном полимере — поливинилхлориде — не давало возможности получить нужный комплекс гигиенических свойств [3.  [c.343]

    Гидрофобные синтетические волокна отличаются от гидрофильных природных и химических волокон прежде всего тем, что они не набухают в воде и водных растворах, поэтому требуются какие-то иные способы повышения восприимчивости гидрофобных синтетических волокон к красителям, например повышение температуры. В обычных условиях (20—25 °С) макромолекулы термопластичных синтетических полимеров находятся как бы в замороженном, застеклованном состоянии и не способны к каким-либо перемещениям. При повышении температуры в определенный момент происходит расстекловывание полимера, т. е. возникает явление сегментальной подвижности макромолекул, что приводит к образованию в аморфных областях волокна свободных пространств, достаточных для прохода молекул красителя. Температура, при которой происходит изменение сегментальной подвижности макромолекул волокнообразующего гидрофобного полимера, называется температурой стеклования. О том, насколько эффективен температурный фактор при краш1ении гидрофобных синтетических волокон в водной среде, можно судить по следующим экспериментальным данным. При 100 °С коэффициент диффузии красителя в полиэфирном волокне, характеризующий скорость проникновения красителя в волокно, составляет 10 —10см /с. Повышение температуры до 150—230°С приводит к увеличению этого показателя до 10 °—10 см /с. С примерно такими же скоростями диффундируют красители в набухшие в воде гидрофильные волокна при 100°С. [c.48]


Смотреть страницы где упоминается термин Гидрофобные полимеры: [c.48]    [c.71]    [c.102]    [c.406]    [c.258]    [c.177]    [c.13]    [c.212]    [c.213]    [c.216]    [c.799]    [c.111]    [c.13]    [c.400]    [c.9]    [c.138]    [c.249]    [c.50]   
Смотреть главы в:

Химическая стойкость полимеров в агрессивных средах -> Гидрофобные полимеры


Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Энциклопедия полимеров том 1 (1972) -- [ c.0 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Основы химии высокомолекулярных соединений (1961) -- [ c.341 ]

Химическая стойкость полимеров в агрессивных средах (1979) -- [ c.109 , c.112 , c.133 , c.144 , c.148 ]

Введение в мембранную технологию (1999) -- [ c.71 , c.72 , c.79 , c.108 , c.288 , c.290 , c.315 , c.383 ]




ПОИСК







© 2024 chem21.info Реклама на сайте