Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предельные напряжения

    Величину предельного напряжения сдвига Рт рассчитьшают по формуле (в Н/м) [c.154]

    Графическое представление этой зависимости, называемое реологической кривой (или кривой течения), приведено на рис. 11.1 (кривая 4). В равенство (11.3), кроме коэффициента вязкости г входит также постоянная Тд, называемая начальным (или предельным) напряжением сдвига. Считается, что при т < Тц жидкость ведет себя как твердое тело, 336 [c.336]


    Коэффициент бокового давления представляет собой отношение главных нормальных напряжений и Оз в условиях предельного напряженного состояния сыпучего материала и находится из уравнения [c.13]

    Вернемся к безынерционным движениям, однако теперь мы будем рассматривать фильтрацию неньютоновской жидкости, характеризующейся предельным напряжением сдвига достижения которого жидкость ведет себя как твердое тело, а после достижения напряжением сдвига т предельного сдвигового напряжения т -как вязкая жидкость под действием избыточного напряжения сдвига т — Тд. Таково поведение многих нефтей, в частности, нефтей на месторождениях Прикаспия. Тогда к определяющим параметрам добавляется параметр Tq и появляется новый безразмерный параметр подобия  [c.32]

    Воздействие колебаний на упруго-вязко пластичные материалы приводит к резкому уменьшению предельного напряжения сдвига или его полному устранению. Система переходит в состояние с эффективной вязкостью, зависящей от интенсивности колебаний. Бингамовские пластики при этом превращаются в ньютоновскую жидкость. [c.140]

    Большинство нефтяных масел в зависимости от температурных условий может вести себя как ньютоновская жидкость ири повышенных температурах и как структурная жидкость при охлаждении. Картина изменения данного свойства нефтяных масел при изменении температуры такова. В области повышенных температур масло, будучи нолностью гомогенной жидкостью, подчиняется уравнению Ньютона при охлаждении масла наступает момент, когда в нем начинает образовываться дисперсная фаза вследствие снижения растворимости части входящих в состав этого масла парафинов. Вначале, пока концентрация дисперсной фазы остается низкой и связь между ее частицами слабой, появляется только аномалия вязкости ири отсутствии предельного напряжения сдвига. При дальнейшем охлаждении концентрация дисперсной фазы растет, связь между ее частицами усиливается, и по- [c.10]

    Большое число работ убедительно демонстрирует отличие свойств жидкости, находящейся вблизи поверхности, от свойств в ее объеме [14, 36, 87, 114, 466—475]. Так, обнаружена аномалия диэлектрических свойств [469, 470], эффект ск ачкообразно-го изменения электропроводности [470], изменение вязкости в зависимости от расстояния до твердой- стенки [114, 471, 472], появление предельного напряжения сдвига жидкости при приближении к поверхности твердого тела [14, 473, 474]. Для набухающего в водных растворах 1 а-замещенного монтмориллонита обнаружена оптическая анизотропия тонких прослоек воды [36] найдено изменение теплоемкости смачивающих пленок нитробензола на силикатных поверхностях [475]. Установлено отличие ГС от объемной жидкости по растворяющей способности, температуре замерзания, теплопроводности, энтальпии. В. Дрост-Хансеном опубликованы обзоры большого числа работ, содержащие как прямые, так и косвенные свидетельства структурных изменений в граничных слоях [476—478]. В качестве косвенных доказательств автор приводит, в первую очередь, существование изломов на кривых температурной зависимости ряда свойств поверхностных слоев. Эти температуры отвечают, согласно Дрост-Хансену, разной перестройке структуры ГС. Широко известны также работы Г. Пешеля [479] по исследованию ГС жидкостей (и, прежде всего, воды) у поверхности кварца в присутствии ряда электролитов. [c.170]


    Седиментометрические и реологические исследования, а также поляризационная микроскопия позволили объяснить действие ультразвука на процесс кристаллизации твердых углеводородов при депарафинизации и обезмасливании. При обработке суспензий твердых углеводородов ультразвуком разрушаются связи между кристаллами твердых углеводородов, что приводит к разрушению образованной ими пространственной структуры при дальнейшем охлаждении эта структура не восстанавливается. Сами же кристаллы парафина при обработке ультразвуком почти не разрушаются. В результате резко снижается структурная вязкость системы и исчезает динамическое предельное напряжение при сдвиге. Все это создает условия для роста кристаллов с образованием агрегатов, обусловливающих высокие скорость и четкость отделения твердой фазы от жидкой, что приводит к увеличению скорости фильтрования, выхода депарафинированного масла и снижению содержания масла в твердой фазе. Однако применение метода ультразвуковой обработки суспензий твердых углеводородов при депарафинизации и обезмасливании пока не вышло из стадии лабораторных исследований. [c.163]

    Первая причина условности заключается в том, что предельное напряжение сдвига, которое может быть использовано в качестве объективного критерия оценки потери подвижности структурных масел, не является однозначным понятием, а имеет разные значения при разных температурах масла. Поэтому приходится обусловливать величину предельного напряжения сдвига, при которой масло следует считать застывшим. [c.11]

    Wg — массовый расход газа Ws — массовый расход твердого материала X — расстояние (вдоль оси) от выхода из насадка (против движения струн) X — характеристическая длина насадка 6 — средняя порозность 8mf — порозность при скорости начала псевдоожижения 8ть — порозность при скорости, соответствующей возникновению пузырей Рр — объемная плотность зернистого материала Pg — плотность твердых частиц Pf — плотность ожижающего агента Pi — плотность жидкости а — нормальное напряжение Ос — предельное напряжение сдвига т — касательное напряжение Ф — угол внутреннего трения [c.589]

    В основу расчета прочности элементов оборудования закладываются некоторые предельные напряжения а р и [c.97]

    Дальнейший анализ аналогичен предьщущему примеру. Кроме этого предельные напряжения и давление не удается выразить в явной форме. Поэтому ограничимся выше изложенным. Необходимо сказать, что в случае, ес- [c.114]

    Если дефект ослабляет стенку элемента, то предельные напряжения определяются по формуле [1]  [c.333]

    Предельная мощность, передаваемая волной Яю,зависит от предельной напряженности и определяется по формуле  [c.88]

    В традиционных способах и устройствах разрушение материалов достигается механическим воздействием мелющих тел или кусков того же материала. Элементарным актом процесса является создание в обрабатываемом материале предельных напряжений сдвига при сдавливании, ударе или срезе [1]. [c.111]

    Из практики разработки многих нефтяных месторождений (Азербайджана, Башкирии, Татарии, Казахстана и др.) известны факты необычного поведения пластовых систем, которые можно объяснит ь проявлением неньютоновских свойств флюидов при их фильтрации. Особенности фильтрации таких, как называемых, аномальных нефтей связаны в основном с повышенным содержанием в них высотсомолеку-лярных компонентов смол, асфальтенов, парафина и наличием предельного напряжения сдвига. [c.335]

    Второй причиной условности структурного застывания масла является зависимость самой величины прёдёльногб напряжения сдвига при данной температуре от многих внешних факторов, в частности от условий подготовки образца -масла к испытанию, от техники и способа испытания и дрХ Большую роль играет скорость охлаждения масла, условия приложения к нему смещающих усилий нри испытании и т. д. И только при строгом и разностороннем регламентировании условий онределения предельного напряжения сдвига масла или температуры его структурного застывания данный показатель качества может получить однозначное и воспроизводимое числовое значение. [c.11]

    Структурированные суспензии обладают свойствами бингамовских пластичных жидкостей, для которых можно записать реологическое уравнение в виде т - т,. + i 4vldx, где Тс — предельное напряжение сдвига, приводящее к разрушению структурированной системы ц, — эффективная вязкость, тождественная пластической вязкости fin в уравнении (5.2). [c.146]

    При т < Тс структурированная суспензия медленно течет подобное течение можно отождествлять с ползучестью. Это означает что Тц является ие статическим (как т в реологическом законе Шве дова — Бингама), а динамическим предельным напряжением сдвига При т > Те структура начинает разрушаться разрушение усили вается с ростом dv/dx. При этом вязкость fj,,, постоянна вплоть до та кого значения dv/dx, при котором структура полностью разрушится 1 6 [c.146]


    Предельное напряжение сдвига То при й = О называется пределом текучести . При напряжениях сдвига меньших наблюдается только упругая деформация, при т — пеупру-гая деформация (течение). [c.233]

    Параме1р а определяется методами сопротивления материалов, теории упругости, механики трещин и др. и включает в себя компоненты тензора напряжений, зависящие от геометрических характеристик конструкции, внешних силовых нагрузок, упругих свойств материала и др. Коэффициент запаса прочности характеризует уровень напряжений при эксплуатации изделия и устанавливается в зависимости от условий работы на основании статистических данных о работоспособности подобных конструкций. Параметр п косвенно оценивает качество технологии изготовления, расчетов на прочность, материала и др. За предельное напряжение а р принимается одно из значений компонентов тензора напряжений или их определенное сочетание, при котором наступает текучесть, разрушение или нарушение первоначальной формы изделия. Обычно в условиях статического нагруж ения за величину стпр принимают либо предел текучести СТт, либо временное [c.98]

    В месте выхода дефекта на поверхность непрокодированного участка трубы возможно возникновение концентрации напряжений. Рассмотрим случай, когда сплошная коррозия охватывает весь периметр трубы (рис.4.21). По данным работы [7] построена зависимость концентрации предельных напряжений Ог от относительного радиуса закругления (рис.4.22). [c.266]

    Долговечность элемента с концентратором напряжений или дефектом определяется по формуле (6.1) с соответствующей расшифровкой параметров Рн и Ку к. Величина Рн вычисляется по величине предельного напряжения а1пр, определяемого по формулам (6.8) и (6.9)  [c.334]

    Р пред - aont НО теории предельных напряженных состояний [c.332]

    По теории предельных напряженных состояний будет, как раньше  [c.333]

    При "т < Тс структурированная суспензия медленно течет, подобное течение можно отождествлять с ползучестью. Это означает, что Т(, является не статическим (как Тд в реологическом законе Шведова — Бингама), а динамическим предельным напряжением сдвига. При X > тс структура начинает разрушаться разрушение усиливается с ростом ь/дх. При этом вязкость (I , постоянна вплоть до такого значения dvldx, при котором структура полностью разрушится. 146 [c.146]

    Согласно наиболее распространенной гипотезе, кристаллизация твердых углеводородов из масла, приводящая к его застуднева-Пию, рассматривается как образование в системе парафин — масло пространственной сетки (или каркаса), которая, иммобилизуя жидкую фазу, препятствует ее движению. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов, где наблюдается разрыв пленок дисперсионной среды образовавшийся гель обладает определенной механической прочностью. Другая гипотеза связывает застудневание с возникновением сольватных оболочек жидкой фазы вокруг кристаллов парафина. Дисперсионная среда, иммобилизированная вокруг дисперсных частиц, значительно увеличивает их объем, что повышает внутреннее трение всей системы и понижает ее текучесть. Предполагают, что при сдвиге, обусловленном механическим воздействием, толщина сольватных оболочек уменьшается и гель может превращаться в золь. При понижении температуры масел развитие процесса ассоциации приводит к образованию мицелл, вызывающих застудневание системы независимо от того, выделяется твердая фаза или нет. Добавление депрессоров значительно снижает как статическое, так и динамическое предельное напряжение сдвига депрессоры задерживают появление аномальной вязкости, сдвигая начало образования структуры в область более низких температур. [c.151]

    Исследовано изменение механической прочности межфазных слоев на границе нефть - вода во времени для нескольких нефтш, образующих устойчивые эмульсии. Исследование проводили по методике, разработанной в институте физической химии АН СССР [20], с использованием прибора СНС-2. Механическая прочность межфазного ело характеризуется предельным напряжением сдвига Рт, определяемым по углу закручивания вольфрамовой нити, на которой подвещен стеклянный диск, находящийся на границе раздела нефть - вода. Экспериментально измерена механическая прочность межфазного слоя на границе нефть -вода через 5, 10, 100, 300, 1000 и 1500 мин после формирования слоя (высокосмолистая арпанская, смолистая ромашкинская и высокопара-финистая мангышлакская нефти). Все испытанные нефти, весьма различные по своему составу и свойствам, образуют при интенсивном перемешивании с водой (пластовой и дистиллированной) устойчивые эмульсии. [c.23]

    На рис. 5 показано изменение механической прочности межфазного слоя на границе нефть (ромашкинская) -пластовая вода при 20° С без дезмульгатора и с добавкой его. Как видно из графика, механическая прочность слоя, судя по предельному напряжению сдвига Р ,, достигает максимального значения за 24 ч, т. е. идет интенсивное старение межфазного слоя. При добавке деэмульгатора скорость старения значительно замедляется. [c.23]


Смотреть страницы где упоминается термин Предельные напряжения: [c.9]    [c.10]    [c.11]    [c.548]    [c.180]    [c.181]    [c.580]    [c.241]    [c.98]    [c.105]    [c.259]    [c.309]    [c.333]    [c.467]    [c.467]    [c.467]    [c.546]    [c.7]    [c.310]    [c.178]    [c.180]   
Смотреть главы в:

Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок -> Предельные напряжения




ПОИСК







© 2025 chem21.info Реклама на сайте