Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты неорганические стойкость

    Неорганические полимеры. Неорганических полимеров — множество. Отличительным и практически важным свойством многих неорганических полимеров является их термическая и химическая стойкость. Другой отличительной чертой многих неорганических полимеров является их твердость и хрупкость. Это обусловлено наличием пространственной кристаллической структуры и часто высокой долей ионной составляющей химической связи. Влияют [c.611]


    Такие материалы имеют молекулярную структуру с преимущественно ионными связями и склонность относительно легко реагировать с водой в них наблюдается интенсивное избирательное взаимодействие с кислыми, щелочными и минерализованными водами. Для большинства неорганических неметаллических материалов характерна значительная пористость, которая предполагает возможность фильтрации и подноса воды или увлажнения вследствие конденсации паров. Многие силикатные материалы имеют полиминеральную структуру, часто переходящую в конгломератную. В соответствии с общей теорией искусственных строительных конгломератов оптимальной структуре соответствует комплекс наиболее благоприятных показателей фи-зико-мехаиических п эксплуатационных свойств конгломерата, т. е. у всех конгломератов сохраняется, как и у вяжущего вещества, только одна экстремальная точка на графической зависимости свойства — с/ф (рис, 9). Коррозионная стойкость силикатных материалов определяется стойкостью наиболее слабого составляющего, обычно цементирующего вещества. [c.35]

    Нередки случаи, когда значения различных неорганических веществ близки между собой < 0,2 в) при снятии / — -кривых для смеси таких веществ получается одна волна. Можно раздвинуть величины потенциалов полуволн компонентов, вводя в раствор соответствующее вещество, которое образует с ионами металлов комплексные соединения различной стойкости. Величина будет зависеть от степени прочности комплексного иона. Металлу, образующему более прочный комплекс, будет соответствовать более отрицательное значение В результате смесь компонентов будет полярографически определяема. Так, например, на фоне I н. КС1 ионы Zn и дают почти одинаковые значения [c.126]

    Как известно, применяемые в настоящее время неорганические ионообменные сорбенты (окиси, гидроокиси и соли металлов, алюмосиликаты, силикагели, пермутиты, бентониты, глаукониты, цеолиты и т. д.) обладают высокоразвитой удельной поверхностью, способностью к химической, молекулярной сорбции и сорбции коллоидных частиц, повышенной радиационной и термической стойкостью. Они, как правило, слабо набухают в водных растворах, и ионный обмен происходит в основном на поверхности сорбента, так что кинетика обмена не осложняется процессами, связанными с диффузией ионов в фазе самого сорбента, как это имеет место в случае большинства ионообменных смол. С другой стороны, ионообменные смолы превосходят неорганические сорбенты по таким важным показателям, как величина емкости, основность или кислотность, химическая стабильность. Понятно, что определенный интерес представляет получение ионообменников, сочетающих в себе свойства ионообменных материалов как минеральной, так и органической природы. Этой цели можно достигнуть, используя принцип получения комбинированных минерально-полимерных продуктов путем газофазной привитой полимеризации, осуществляя на неорганических сорбентах полимеризацию мономеров, дающих полимеры, способные к ионному обмену (сами по себе или после введения соответствующих ионообменных групп путем необходимых химических превращений) [1]. [c.168]


    В системе защиты подземных металлических трубопроводов от коррозии наиболее эффективным и ответственным ее элементом является нанесение высококачественных покрытий, обусловливающих надежную работу сооружения в течение всего расчетного срока его службы. На трубопроводах применяют, как правило, органические покрытия, хотя в некоторых случаях наносят и неорганические. Применяемые органические покрытия должны удовлетворять весьма жестким, противоречивым требованиям, а именно обладать высокими диэлектрическими свойствами быть сплошными иметь хорошую адгезию к металлу обладать низкой влагопроницаемостью и малым влагопоглощением противостоять проникновению хлоридов, сульфатов и других ионов, которые ускоряют процесс коррозии стали противостоять осмосу и электроосмосу обладать высокой химической и биологической стойкостью обладать высокой механической прочностью быть эластичными не менять своих свойств при отрицательных температурах в зимнее время и высоких температурах в летний [c.105]

    Сорбенты. Ионообменные материалы — важный класс неподвижных фаз, используемых в жидкостной хроматографии. Развивающийся хроматографический метод предъявляет к ионообменникам следующие основные требования высокая ионообменная емкость химическая стойкость при контактах с кислыми и щелочными растворами механическая прочность определенная степень набухания хорошие кинетические свойства при сорбции и десорбции ионов достаточная термическая и радиационная устойчивость селективность действия по отношению к отдельным ионам или группам ионов. Ионообменными свойствами обладают многие вещества. Их можно разделить на две большие группы неорганические и органические. Каждая из групп в свою очередь подразделяется на природные и синтетические. [c.79]

    Для получения особо чистых веществ могут использоваться иоииты как органического, так и неорганического происхождения [8, 9]. В последнем случае область применения ионитов, виду их невысоких химической и механической стойкостей, ограничс[ и соединениями элементов, образующих данный ионит. Так. папример, ионит фосфатциркония рекомендуется применять для глубокой очистки только соединений циркония. Несколько особое положение занимают иониты на основе графита и активных углей. Окислениий графит, сульфированные, азотированные и окисленные активные угли, из которых предварительно удалены микропримеси, являются перспективными ионитами в технологии особо чистых веществ, [c.186]

    Полисиликаты лития в основном используются как противокоррозионные покрытия, содержащие тонкодисперсный цинк, в которых кремнезем играет роль неорганического связующего вещества [109, 110]. Добавление органосиликоната улучшает водостойкость покрытия [111]. Сообщается, что подобный состав годится как связующее вещество для тормозных накладок [112]. Возможное добавление в этот состав небольшого количества эмульсии стирол-акрилового сополимера ведет к улучшению адгезии к стали [ИЗ]. Другой добавкой, способной улучшить стойкость полисиликатов к морской воде, является небольшое количество гидроксида бария [114]. Согласно Дюпре и Бумену [115], силикат бария более растворим, чем соль кальция или стронция, поэтому в растворе будет достаточное количество силикат-ионов, способных ингибировать коррозию алюминия под действием щелочи. Адгезия и способность к связыванию грунтовых лаков, обогащенных цинком, соединенных с полисиликатом лития, были улучшены замещением некоторого количества дифосфида железа или кадмия на цинк [116]. [c.205]

    Неорганические сорбенты, перспективы их использования. Селективность ионообменной сорбции можно повысить, применяя современные неорганические иониты, в синтезе которых достигнуты значительные успехи. Как известно, проблема ионного обмена вначале возникла и развивалась применительно к минеральным системам (минеральная часть почв, глины, цеолиты и другие), в результате чего был создан первый синтетический ионообменник (пермутит), пригодный для целей водоумягчения, но имеющий невысокую обменную емкость и малую химическую стойкость. Следующим этапом было создание органических ионообменных смол, сыгравших выдающуюся роль в развитии химии и технологии. Органические иониты, очевидно, не утратят своего значения и в будущем. Однако привлекают внимание и неорганические иониты — гидратированные оксиды, некоторые фосфаты, гетерополисоедине-ння переходных металлов, многие минералы, способные работать даже при воздействии радиоактивных излучений, высоких температур, а также разделять близкие по химическим свойствам, но различающиеся по размерам ионы и обеспечивать высокую селективность поглощения некоторых из них, не достигаемую во многих случаях с помощью органических ионитов. [c.117]


    Термическая стойкость силоксановых полимеров вызывается не только влиянием энергии связи 51—О, но и ионным характером связи 31—О (50%), в чем она приближается к неорганическим соединениям с чисто понным характером, которые известны своей термостабильностью. Можно представить себе, что полимерная молекула пол)1силоксана имеет строение, аналогичное строению неорганических силикатов [1274, 2061]. [c.191]

    Расплавленные метафосфаты, бораты и силикаты представляют собой неорганические полимеры. При высоких температурах они способны растворять многие окислы [2]. Поэтому явление с мопассивации металлов продуктами их коррозии — малорастворимыми оксидами — не характерно для этих сред. Деполяризующая активность фосфатных анионов понижается в ряду мета-, пара-, ортофосфатов щелочных металлов и в зависимости от природы катионов от к На+ и [41. Установлено падение коррозионной стойкости металлов в ряду Аи Р1 -> Р(1 AgМоN1СиРеТ1Сг. Причем золото, платина и палладий индифферентны к этим средам и их используют в качестве электродов сравнения, обратимых по ионам О ". Серебро не устойчиво. Молибден и никель проявляют стойкость только в отсутствии примесей кислорода и воды, Си, Ре, Т , Сг активно растворяются. [c.376]

    Коррозионная стойкость платиновых анодов в электрохимических синтезах является важным фактором, во многом определяющим экономику процессов. Исследования стойкости платины в различных электролитах доказали, что растворение ее происходит с участием поверхностных оксидов. В растворах неорганических кислот НМОз, Н2504, НСЮ4, не содержащих легко окисляющихся ионов, пр1и потенциалах 0,7—0,9 В поверхность платины запассивирована хемосорбированным кислородом и скорость растворения очень мала, порядка 10 А/м . Скорость растворения возрастает при потенциалах выше 1,4— [c.34]

    Способность ионов металлов образовывать летучие хела-ты с -дикетонами открывает реальные воз.можности для внедрения ГХ в аналитическую химию неорганических соединений [49, 157]. Хелаты металлов по сравнению с другими металлорганическими соединениями обладают преимуществами в легкости их получения в водных или неводных средах, в возможности образования однотипных соединений многими металлами. К настоящему времени синтезировано много хелатов, летучесть и термическая стойкость которых удовлетворяют требованиям ГХ. Для фторсодержащнх хелатов эффективно применение электронозахватного детектора, обладающего наивысшей чувствительностью из всех известных детекторов. В табл. 6 приведены данные по- ГХ хелатов [c.96]


Смотреть страницы где упоминается термин Иониты неорганические стойкость: [c.480]    [c.6]    [c.95]   
Иониты в химической технологии (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Неорганические иониты. Иониты

Неорганические иониты. Иониты неорганические



© 2024 chem21.info Реклама на сайте