Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газ идеальный, адиабатическое расширение и сжатие

    Охлаждение путем расширения газов. В процессе адиабатического расширения сжатого газа температура понижается, так как внешняя работа в этом случае совершается за счет внутренней энергии газа. Связь между / и р в адиабатическом процессе для идеального газа  [c.12]

    Охлаждение газов при их расширении в детандере. В данном случае расширение предварительно сжатого газа происходит в газовом двигателе, который одновременно совершает внешнюю работу последняя может быть использована для любых целей, например для перекачки жидкостей или нагнетания газов. Расширение сжатого газа в детандере происходит без обмена теплом с окружающей средой, и совершаемая при этом газом работа производится за счет его внутренней энергии, в результате чего газ охлаждается. Предельная температура охлаждения определяется по общему уравнению (IV, 1) для адиабатического расширения идеального газа. [c.652]


    Однако практически преимущества детандирования, по сравнению с дросселированием, не столь значительны, как следует из теоретических соображений. Действительно, согласно уравнению (IV, 8) для идеального газа, работа адиабатического расширения, при прочих равных условиях, пропорциональна абсолютной температуре газа в первой степени. Расширение газов в детандере происходит при значительно более низких температурах, чем их сжатие в компрессоре, и поэтому доля расхода энергии, компенсируемая работой детандера, невелика. Она уменьшается еще больше при работе детандера в области, где происходит частичное сжижение газа, т. е. когда свойства газа весьма значительно отклоняются от законов идеального состояния. Эффективность охлаждения при расширении газа в детандере также заметно снижается вследствие гидравлических ударов и вихреобразования, приводящих к выделению тепла и потерям холода, обусловленных несовершенством тепловой изоляции детандера. [c.693]

    Рассмотрим работу идеальной тепловой машины, в которой в качестве рабочего вещества применяется идеальный газ. За счет теплоты, поглощаемой от нагревателя, изменяется состояние газа и совершается работа. Машина работает по циклу, который состоит из четырех процессов 1) изотермического расширения 2) адиабатического расширения 3) изотермического сжатия 4) адиабатического сжатия. Все процессы проводятся обратимо, и газ после завершения цикла возвращается в исходное состояние. Допустим, что машина работает без трения и не теряет теплоты на лучеиспускание. Возьмем в качестве рабочего вещества 1 моль идеального газа, начальное состояние которого характеризуется температурой ТI, давлением рх и объемом VI (точка А, рис. 33). [c.95]

    В идеальной форме, как показано на рис. 3.25, простой (т. е. без промежуточного охлаждения воздуха и регенерации тепла) цикл ГТД (цикл Брайтона) состоит из обратимого адиабатического (изоэнтропийного) сжатия (линия 1—2), подвода тепла при постоянном давлении (линия 2—< ), адиабатического расширения (линия 3—4) и охлаждения при постоянном давлении до начального состояния (линия 4—1). На практике охлаждение достигается непрерывным выпуском отработавших газов и замещением их воздухом из окружающей среды. [c.160]


    Идеальный газ совершает квазистатический циклический процесс (цикл Карно), изображенный на фиг. И. Переход из 1 в 2 представляет собой изотермическое расширение, при котором газ находится в контакте с тепловым резервуаром с температурой Т1, переход из 2 в 3 — адиабатическое расширение, переход из 3 в 4 — изотермическое сжатие, при котором имеет место контакт с тепловым резервуаром с температурой и, наконец, переход из 4 в 1 является адиабатическим сжатием. Доказать соотношение [c.44]

    На таких диаграммах можно легко проследить ход тех изменений, которым подвергается вещество (испарение, конденсация, сжатие, расширение, охлаждение, изменения адиабатические, изотермические, изоэнтальпные и другие). Для любой точки линии изменения можно быстро найти на диаграмме параметры, характеризующие состояние вещества (энтропию, энтальпию, давление, объем, температуру). В работе, связанной с развитием технологического метода, когда обязателен, например, выбор оптимального варианта процесса, проходящего при рассмотренных нами изменениях системы, энтропийные диаграммы незаменимы. Кроме того, следует помнить, что, особенно в областях низких температур и высоких давлений, поведение реальных газов резко отличается от поведения идеального газа, и расчеты по рассмотренным выше уравнениям требуют внесения поправок, трудно поддающихся вычислению, а иногда и не очень точных. Проведение расчетов с использованием энтропийных диаграмм, составленных по экспериментальным данным, обеспечивает получение значительно более точных результатов в короткое время. [c.142]

    На рис. XVH-6 дано изображение цикла идеальной компрессионной холодильной машины на диаграмме р—i. На этой диаграмме холодопроизводительность Qo и затрата работы L изображаются прямолинейными отрезками, что упрощает их определение по сравнению с определением по диаграмме Т—S, в которой значения Q и L находит путем измерения соответствующих площадей. Отрезок I—2 — адиабатическое сжатие паров холодильного агента в компрессоре / отрезок 2—3— конденсация этих паров в конденсаторе // отрезок 3—4— расширение жидкого холодиль- [c.655]

    Минимальная затрата работы будет при идеальном процессе сжижения газа, который можно представить осуществляемым путем изотермического сжатия и адиабатического расширения. Как видно из Т—5-диаграммы (рис. 482), в таком процессе газ сжимается изотермически при температуре Тх от точки А до точки В по прямой АВ. После сжатия газ адиабатически расширяется по вертикали ВС, превращаясь в жидкость. Газ подвергается также охлаждению, причем при помощи охлаждающей воды от него отнимают не только тепло в количестве, необходимом для сжижения, но и тепло, выделившееся в результате изотермического сжатия [c.706]

    Следовательно, при изменении направления процессов, проходящих последовательный ряд таких бесконечно близких состояний, можно не только вернуть систему и окружающую ее среду в первоначальное состояние, но и заставить их (систему и среду) совершить в обратном направлении точно те же изменения, что и при прямом процессе. Примером обратимых процессов может служить адиабатическое расширение или сжатие идеального газа. Однако этот процесс может быть обратим лишь при условии полной тепло-изолированности системы и бесконечно медленного изменения объема и давления газа, необходимого для быстрого выравнивания температуры. Изотермическое расширение или сжатие идеального газа тоже может быть обратимым процессом при условии немедленного теплообмена с окружающей средой, необходимого для сохранения постоянства температуры. И адиабатический, и изотермический процессы обратимы при условии бесконечно медленного их протекания и исключения трения. Таким образом, понятие об обратимости процесса вводится в целях установления стандарта для сравнения реальных процессов. [c.46]

    В качестве теоретического цикла был принят необратимый цикл, включающий адиабатическое сжатие идеальной газовой топливовоздушной смеси, адиабатическое сгорание при постоянном объеме до равновесного состава продуктов сгорания, адиабатическое расширение продуктов сгорания. [c.25]

    Цикл, в котором на охлаждение затрачивается минимальная работа, называется идеальным циклом. Затраты энергии будут минимальны в процессе сжижения газа путем его изотермического сжатия и адиабатического расширения. [c.107]

    Во время адиабатического расширения или сжатия идеальный газ следует уравнению [c.96]

    Пример 1. Определить давление р2 в конце изотермического сжатия в идеальном цикле, необходимое для того, чтобы после адиабатического расширения полностью сжижить весь воздух (рис. 2-4). Скрытая теплота г = 47 ккал/кг, Г(,=80° К. Изменение энтропии охлаждаемого идеального газа  [c.85]

    После второй стадии, представляющей собой адиабатическое расширение, рабочий газ изотермически сжимается, отдавая теплоту теплоприемнику. Этот процесс тоже протекает необратимо, так как сжатие газа происходит по изотерме, лежащей выше изотермы, отвечающей температуре Гг. Таким образом, в этой стадии абсолютная величина получающейся отрицательной работы больше, чем в равновесном цикле. А потому и количество теплоты <72, отданное теплоприемнику, необратимого цикла т)необр рассчитывается так же, как и больше величины Рг идеального цикла. [c.38]


    Один пример уже был приведен в 8. В данном параграфе ограничимся рассмотрением квазистатических процессов. Очевидно, вышеупомянутый закон должен быть справедлив для этого специального класса изменений состояний. Примером может служить адиабатическое сжатие или расширение идеального газа, которое осуществляется изменением величин Р я V, связанных уравнением (7.2). [c.46]

    Почему в формулировках Клаузиуса и Кельвина речь идет о круговом процессе — действуя посредством кругового процесса Потому что, например, при однократном расширении идеального газа по изотерме 1—2 (рис. П1.3) в принципе возможно поЛное превращение теплоты в работу [вспомните соотношение (П.33), где Qt= Ат. Но нельзя бесконечно расширять газ, и для повторения операции получения второй и т. д. порций работ необходимо будет его сжать. Если сжимать газ при той же температуре Ti, т. е. по изотерме 2—1 (рис. П1.3), не получится выигрыша работы. Поэтому в цикле Карно газ из состояния 2 расширяют адиабатически до состояния 3, снижая его температуру до T a. Сжатие при T a требует затраты меньшей работы [формула (П.33)1, а поэтому в целом и получается выигрыш работы, равный площади цикла 1 2 3 4. [c.69]

    Уравнение энергии при адиабатическом процессе. Интегрирование уравнения Бернулли (2. 68) для идеального газа требует установления зависимости плотности q от давления р. При быстром движении потока газа в лопастных машинах возможность теплообмена с внешней средой путем теплопроводности очень невелика. Поэтому процессы расширения и сжатия газа, связанные с изменением давления при движении частицы вдоль трубки тока, происходят практически без обмена тепла с внешней средой, т. е. являются, с технически достаточной точностью, адиабатическими. [c.65]

    Но что такое ра.ч(гость те.мператур Эго один из моментов, упу щенных па.ми пз виду мы также упустили несколько других моментов, Во-первых, мы не определили точно, расширяется или сжимается система мы вычислили изменение внутренней энергии и тем самым — проделанную работу при переходе от некоторого начального состояния в точно не определенное конечное состояние. Во-вторых, и это важнее, мы даже не определили, производится лп работа в условиях обрати.мостн. И тем не менее уравнение (3,2,23) справедливо для все.х видов адиабатического расширения или сжатия идеального газа, обратимого или необратимого  [c.106]

    Если жидкость представляет собой газ или воздух, возможны следующие два случая медленное сжатие или расширение, соответствующее изотермическому процессу, и быстрое сжатие или расширение, отвечающее адиабатическому процессу. При расчете гидравлической емкости цепи, обычно необходимом для проектирования трубопроводов низкого давления, в общем случае принимают, что процесс протекает изотермически. Определение гидравлической емкости цепи на основе адиабатического процесса должно применяться в тех случаях, когда для рассматриваемых давлений и жидких сред возможно образование волны сжатия в области звуковых частот. Как при изотермическом, так и при адиабатическом процессах исходят из идеального газа и определения гидравлической емкости цепи как отношения Q  [c.102]

    Рассмотрим основной термодинамический цикл, или цикл Карно, состоящий из четырех последовательно совершающихся процессов изотермического расширения газа, адиабатического расщирения, изотермического сжатия, адиабатического сжатия. Все указанные процессы обратимы, поэтому конечное состояние газа совпадает с исходным. Рабочим телом является 1 моль идеального газа, начальное состояние которого характеризуется температурой Т, давлением р и объемом V. На рис. 28, б показан основной термодинамический цикл Карно. [c.111]

    Идеальный цикл сжижения в s, Г-диаграмме (рис. 10) можно представить следующим образом. Газ сжимается изотермически (1—3) до давления jOj. Выделяющееся тепло отводится охлаждающей водой. Сжаты й газ адиабатически расширяется (3—0), совершая внешнюю работу, температура его понижается и в конце расширения (точка 0) он целиком сжижается. Далее процесс идет по линии 0—2—1. [c.432]

    Идеальный цикл сжижения газа. Определим, пользуясь Т — -диаграммой (рис. ХУП-2), минимальную затрату работы при идеальном обратимом процессе сжижения газа. Начальное состояние газа характеризуется точкой 1 (Т1, 1), а его состояние после сжижения — точкой 3. Идеальный процесс осуществляется путем изотермического сжатия газа (линия 1 — 2) и его адиабатического, или изоэнтропического, расширения (линия [c.688]

    Адиабата идеального газа. При адиабатическом расширении или сжатии идеального газа одновременно изменяются как давление и объем, так я температура поэтому уравнение ри = ИТ, оставаясь справедливым, не может быть, оанако, применено для вычислечия изменения переменных состояния. Для последней цели оно должно б з1ть заменено уравнением адиабаты, которое можно вывести слепующим путем. При адиабатическом расширении, когда 4/1= О, уравнение (82а) обращается в [c.250]

    Сжатие и расширение газа (считающегося идеальным) в технических устройствах не будут строго изотермическими и адиабатическими процессами (система обменивается некоторым количеством теплоты с окружающей средой, а Т Ф onst). Для таких процессов, называемых политропными [c.131]

    Второй закон термодинамики-тесно связан с обратимостью процессов. Обратимыми называются такие процессы, которые можно реализовать в прямом и обратном направлении так, чтобы система и окружающая ее среда точно вернулись в исходные состояния. Примером обратимых процессов может служить движение идеальной механической системы, в которой отсутствует трение и другие источники теплоты (математический маятник). Колебания физического маятника не будут обратимыми, так как часть энергии превращается в теплоту трения. Практически обратимым процессом можно считать адиабатическое или изотермическое расширение или сжатие идеального газа при условии бесконечно медленного протекания процесса и исключенияг всякого трения. Обратимые процессы являются идеальными предельными случаями реальных процессов. [c.92]

    Линии адиабатических и полнтропических процессов сжатия или расширения для идеального компрессора совпадают при условии равенства показателей в уравнениях процессов. [c.42]


Смотреть страницы где упоминается термин Газ идеальный, адиабатическое расширение и сжатие: [c.91]    [c.24]    [c.100]    [c.91]    [c.528]    [c.60]    [c.167]    [c.17]    [c.32]    [c.36]   
Физическая химия Том 2 (1936) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Идеальный газ расширение

Сжатие адиабатическое



© 2025 chem21.info Реклама на сайте