Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Точки плавления, определение с помощью микроскопа

    Несмотря на то что область температурного перехода для ДНК относительно узкая, она все же шире, чем можно было бы ожидать для длинной идеально уложенной спиральной структуры. Внутри этой области с помощью метода электронной микроскопии удалось обнаружить только полностью денатурированные или совершенно нативные структуры [239]. И вновь внутри этой области понижение вязкости быстро достигает предельного значения, а дальнейшее понижение вязкости происходит только при повышении температуры, что указывает на существование известного распределения специфических температур денатурации. Вполне обоснованное объяснение этого заключается в том, что вклад двух типов пар оснований в стабильность спирали различен. В таком случае тепловая денатурация должна была бы зависеть от относительного состава либо всей двуспиральной структуры, либо ее отдельных больщих участков. Показано, что температуры плавления (т. е. точки перегиба на кривых зависимости оптической плотности от температуры), определенные в стандартных условиях (0,15 М хлористого натрия в 0,015 М цитрата натрия) для большого числа дезоксирибонуклеиновых кислот, различающихся по составу оснований, прямо пропорциональны содержанию гуанина и цитозина в нуклеиновой кислоте (рис. 8-20) [240]. Линейная зависимость температур плавления от содержания гуаиин-цитозиновых иар исключительно точна, и поэтому измерение этих температур может быть использовано для определения нуклеотидного состава данной ДНК [241, [c.574]


    Применение поляризованного света. Определение точек плавления с помощью микроскопа имеет то преимущество, что процесс плавления можно наблюдать непосредственно. У большинства органических кристаллов переход из твердого в жидкое состояние определяется легко и точно. За исключением очень редких случаев изотропных кристаллов, определение точки плавления при помощи поляризатора и анализатора всегда очень удобно, так как исчезновение двупреломления сейчас же показывает па расплавление кристалла. Впрочем, иногда двупреломление кристалла может исчезнуть ниже точки плавления это возможно в следующих трех случаях  [c.232]

    Для определения температуры плавления применяют капиллярный метод, метод определения под микроскопом и др. Если вещество при температуре плавления полимеризуется или происходят полиморфные превращения, то в таких случаях определяют ориентировочную температуру плавления при помощи нагревателя Кофлера. Для этого исследуемое вещество насыпают непосредственно на хромированную поверхность нагревателя и наблюдают за его изменением. Этим методом можно определить ориентировочную температуру плавления в интервале от 50 до 250° с точностью 1—2°. Существуют методы определения температуры плавления веществ, плавящихся при температуре ниже 0°. Точное определение температуры плавления производят при помощи измерения температуры равновесия фаз (твердой и жидкой). Путем математической обработки полученных данных можно не только определить температуру плавления исследуемого вещества, но и точно оценить степень чистоты исследуемого образца. [c.193]

    Описаны 23 также соответствующие приборы для работы при низких температурах (стр. 814). При помощи диффузионного метода можно быстро проводить качественный анализ двойных систем при использовании микроколичеств препарата. Метод дает возможность получать сведения об образовании простой эвтектики, конгруэнтно и инконгруэнтно плавящихся молекулярных соединений, молекулярных соединений, устойчивых только при температурах ниже температуры плавления эвтектики, смешанных кристаллов (включая изодиморфизм и изополиморфизм), а также о появлении разрыва растворимости в жидкой фазе и др. Кроме того, исследование под микроскопом дает возможность определять важные узловые точки системы, К тому же диффузионный метод имеет большое значение для ориентировочной проверки количественных определений. [c.872]


    Удаление металла из тигля производят в сухой камере, поверхность очищают специальными иглами и скребками. Эти операции проводят под микроскопом со слабым увеличением. Если тигли изготовлены тщательно, то металл лишь незначительно загрязнен тугоплавким материалом. Чистый металл шлифуют и полируют, после чего его исследуют с помощью обычных методов, используемых в металлургической микроскопии. Кроме того, полученные металлы могут быть использованы для измерения теплоты растворения, определения температуры плавления, плотности и т. д. [c.357]

    Линстрем [81] предложил блок, в котором капилляр и термометр помещаются в центральном отверстии блока и отделены от непосредственного соприкосновения с ним слоем воздуха. Канал для наблюдения и боковое отверстие для освещения закрыты стеклянными окошечками (рис. 43). Плавление наблюдается в свете, падающем через боковое отверстие, что имеет некоторые преимущества перед наблюдением в проходящем свете. Опыты, проведенные с этой моделью, дали хорошие результаты. Об определении точки плавления с помощью микроскопа см. [82]. [c.110]

    Точки плавления, определенные с помощью капилляра и блока Макена, не всегда совпадают. Последний метод дает температуру мгновенного разложения, в то время как в методе капилляра получают точку плавления смеси исходного вещества и продуктов его разложения. Промышленностью выпускаются более усовершенствованные приборы для определения точки плавления [67, 135], например прибор, сконструированный Фишер-Джон-сом, Деннисом и Шелтоном, а также нагревательные столики для микроскопов, которые позволяют определять точки плавления микрообразцов. Автоматические приборы для определения точки плавления, особенно удобные для высокомолекулярных веществ, разработаны Юберрейтером и Ортманом 1155]. [c.23]

    В б и ниже настоящей главы был описан принцип оптического определения точек плавления, облегчающий исследование энантиотропных превращений при условии, если участвующие в ней фазы обладают отчетливо различными оптическими и кристаллографическими свойствами. Во многих случаях достаточно произвести лишь ориентировочные термооптические определения точек инверсии для точного же их определения необходимо применять статические методы. С этой целью весьма рекомендуются микропечи Наккена и Энделла во многих случаях даже более простые печи для микроскопа дают удовлетворительные результаты при определении низких точек превращения (например, в кристобалите). Исчерпыв.ающие описания термооптических свойств органических модельных веществ представил Кофлер (см. В, 1, 8), изучавший их с помощью метода, основанного на применении усовершенствованного микроскопа с нагревательным столиком. Таким образом, были хорошо изучены сложные явления изополиморфизма (см. А. I, 120). [c.394]

    Четырехзамещенный пирофосфат натрия очень хорошо растворим в холодной воде 1-процентный раствор имеет pH = 10,2. В водных растворах Нэ4Р207 гидролизуется -ЛО орхофосф та, но скорость гадролиза аначительна виж , чем у более кислого пирофосфата. После 60-часового нагревания при 70° не было обнаружено заметного гидролиза [3]. Известен один гидрат — Na4 207 IOH2O, который кристаллизуется из водного раствора ниже 79°. Гидрат плавится при 79,5°, но при температурах намного ниже точки плавления выветривается. Точное определение температуры плавления проводят с помощью микроскопа с термостатирующим столиком, погрузив кристалл в какую-нибудь инертную жидкость, например в минеральное масло. Кристаллы гидрата положительные двуосные Л/р 1,450, N 1 = 1,453, Ng = 1,460 (+ 0,002). Безводный Na4 207 — двуосный положительный iV = 1,475, N — = 4,477, = 1,496 (+0,002). [c.97]

    После работ Тейлора Уайтлоу-Грей и его сотрудники отказались от весов на призмах и перешли к подвеске коромысла на горизонтальной торзионной нити [23 — 28]. В этой серии работ для определения плотности ксенона, окиси углерода, азота, фтора, кислорода, пропана и других газов было построено несколько типов весов, конструктивно похожих друг на друга. Типичные конструкции приведены на рис. 93 и 94. Весы сделаны полностью из плавленого кварца. Коромысло, изготовленное из кварцевой палочки, подвешено на припаянных к нему торзионных нитях. Вес поплавка, имеющего объем около 3 см , уравновешен противовесом. Для уменьшения ошибки, вызванной адсорбцией исследуемых газов на поверхности поплавка и противовесом, поверхности их сделаны по возможности одного размера при этом апротивовесе учтена и внутренняя поверхность, так как в нем проделано отверстие 4 (рис. 93) для уменьшения его плавучести. Поплавок подвешен на тонкой кварцевой нити, припаянной к окончанию коромысла. Равновесное положение коромысла, как и в весах Тейлора, определялось при помощи микроскопа по положению острия, которым оканчивается противовес. Весы смонтированы на кварцевой рамке и помещены в оболочку из стеклянной горизонтально расположенной трубки диаметром около 3 см. В стенке трубки имеется патрубок с окошком плоскопараллельного стекла для наблюдения за острием указателя. Такие же весы, но с плоским противовесом для улучшения демпфирования колебаний коромысла, показаны на рис. 94. В этой конструкции окошко помещено в торце трубки оболочки. Абсолютная чувствительность весов равна прибли-148 зительно 1,3-Ю" , что соответствует изменению давления окиси углеро- [c.148]


    На предметное стекло помещают квадратное покровное стекло. Небольшое количество первого вещества А помещают у левого ребра покровного стекла (рис. 49). Это вещество расплавляют, и оно затекает под покровное стекло Рис. 49. Контактный пре- примерно ДО середины, после чего ему парат по Кофлеру. дают затвердеть. Второе вещество В помещается у верхнего ребра покровного стекла. Второе вещество также расплавляют, и оно затекает под вторую половину покровного стекла С. Расплавленное второе вещество частично растворяет твердое вещество А в зоне контакта, вследствие чего в зависимости от свойств системы образуются эвтектики, молекулярные соединения и смешанные кристаллы. Точки плавления и точки перехода различных фаз определяют при помощи микроскопа с нагревательным столиком. Очень удобно термотропные явления наблюдать между скрещенными НИКОЛЯМИ в поляризованном свете, когда жидкая эвтектическая зона видна как темная полоса между двумя яркими (двупре-ломляющими) твердыми зонами. Если образуется молекулярное соединение, то может появиться до пяти отдельных полос вещество А, эвтектика А и молекулярного соединения АВ] молекулярное соединение АВ эвтектика АВ и вещества В вещество В. В первом томе своей книги Кофлер приводит многочисленные примеры всевозможных случаев гораздо больше таких примеров указано в таблицах второго тома. Мак-Кроун с сотрудниками [65] разработали новую микроскопическую методику определения органических соединений, основанную на том явлении, что скорость кристаллизации вещества из расплава при заданной температуре зависит от чистоты этого вещества. Они применяли эту методику, для определения примеси 2,2-(5 мс-/г-хлорфенил-1,1,1-трихлорэтана (лг,п -ДДТ) в техническом ДДТ, сравнивая скорость кристаллизации расплавленных исследуемых препаратов со скоростью кристаллизации смесей л,/т -ДДТ и о,п -ДДТ известного состава. [c.240]

    Соотношение (4) описывает поведение расплава, в к-ром первичные зародыши возникают исключительно в результате тепловых флуктуаций, а скорость образования зародышей определяется лишь темп-рой К. и не зависит от темп-ры расплава (т. наз. гомогенное образование зародышей). Однако в расплавах могут присутствовать гетерогенные образования — посторонние микровключения или нераспавшиеся агрегаты макромолекул. Особого внимания заслуживает гетерогенность, обусловленная упорядоченностью полимеров в аморфном состоянии и проявляющаяся во влиянии термич. предыстории расплава на кинетику его К. Такая собственная гетерогенность полимерных расплавов сохраняется при темп-рах, значительно превышающих темп-ру плавления. При наличии гетерогенности скорость образования первичных зародышей в значительной степени определяется скоростью адсорбции макромолекул на гетерогенных образованиях (т. наз. гетерогенное образование зародышей), и в этом случае в выражении (4) (АТ)- заменяется на (А7 )- . Однако притом и другом показателе степени кривая темн-рной зависимости скорости образования зародышей проходит через максимум при темп-ре, лежащей между темп-рами плавления и стеклования, при к-рых скорость образования зародышей равна нулю (рис. 1). Экспериментальное определение скорости гомогенного образования зародышей в расплавах полимеров представляет значительные трудности. Первые надежные результаты получены для полиэтилена, полиэтиленоксида и полипропилена с применением метода диспергирования расплава в жидких средах, позволяющего исключить влияние случайных неоднородностей. Этими опытами установлено, что, напр., капельки полиэтилена диаметром 2—9 мкм переохлаждаются значительно (А7 =55°), в то время как К- полиэтилена в блоке протекает практически мгно-вепно при значении А Г=25°. Менее надежные и неоднозначные результаты получаются обычно при определении скорости образования центров сферолитов с помощью поляризационного микроскопа. Анализ экспериментальных результатов проводится в соответствии с ур-ниями типа ур-ния (4) с учетом того, что при умеренных значениях АТ определяющую роль играет второй член ур-ния и потому в этой темп-рной области 1 I должен быть пропорционален АТ , где I равно 1 или 2 в зависимости гл. обр. от того, происходит ли го- [c.587]


Смотреть страницы где упоминается термин Точки плавления, определение с помощью микроскопа: [c.251]    [c.23]    [c.228]    [c.711]    [c.590]    [c.410]    [c.111]    [c.132]    [c.228]   
Физические методы органической химии Том 2 (1952) -- [ c.229 , c.232 ]

Физические методы органической химии Том 2 (1952) -- [ c.229 , c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскопия

Плавления точка, определение

Точка плавления



© 2025 chem21.info Реклама на сайте