Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Усилитель, главный

Рис. 6. Схема масс-спектрометра фирмы Дженерал Электрик, а — ионизационная камера в увеличенном масштабе, 1 — напряжение, ускоряющее ионы, 2500 2 — ионизационная камера з—ионная линза 4, — коллиматорные щели 4 — магнитное поле, расположенное в плоскости чертежа — вспомогательный коллектор 7 — щель коллектора I — вспомогательный усилитель 9 — главная коллекторная плоскость 10 — главный усилитель 11 регистрирующее устройство 12 — нить 13 — ловушка для электронов. Рис. 6. <a href="/info/679973">Схема масс-спектрометра</a> <a href="/info/929560">фирмы Дженерал</a> Электрик, а — <a href="/info/39662">ионизационная камера</a> в <a href="/info/147284">увеличенном масштабе</a>, 1 — напряжение, ускоряющее ионы, 2500 2 — <a href="/info/39662">ионизационная камера</a> з—ионная линза 4, — <a href="/info/1333693">коллиматорные щели</a> 4 — <a href="/info/18863">магнитное поле</a>, расположенное в плоскости чертежа — вспомогательный коллектор 7 — щель коллектора I — <a href="/info/904402">вспомогательный усилитель</a> 9 — главная коллекторная плоскость 10 — главный усилитель 11 <a href="/info/1158770">регистрирующее устройство</a> 12 — нить 13 — ловушка для электронов.

    Стабильность работы усилителя зависит, главным образом, от стабильности питания анодной цепи и цепи накала катода. Эти цепи питаются или от батареи большой емкости, или чаще от специальных стабилизированных выпрямителей. [c.196]

    Кремний применяется главным образом в металлургии и в полупроводниковой технике. В металлургии он используется для удаления кислорода из расплавленных металлов и служит составной частью многих сплавов. Важнейшие из них — это сплавы на основе железа, меди и алюминия. В полупроводниковой технике кремний используют для изготовления фотоэлементов, усилителей, выпрямителей. Полупроводниковые приборы на основе кремния выдерживают нагрев до 250 °С, что расширяет область их применения. [c.415]

    Эксплуатационная статистика показывает, что присутствие твердых частиц загрязнений в рабочих жидкостях для гидравлических систем является одной из главных причин ненормальной работы этих систем. Так, вследствие загрязнения рабочей жидкости происходит от 20 до 50% всех отказов основных агрегатов авиационных гидравлических систем [22, 29]. В качестве примера в табл. 25 приведены данные по отказам гидравлических усилителей рулевого управления автомобилей ЗИЛ-130 из-за снижения давления в системе. Результаты получены при проверке работы 300 автомобилей в условиях южной климатической зоны в летний период. Как видно из приведенных данных, свыше 65% всех отказов происходит по причине износа деталей или забивания фильтров из-за высокой загрязненности рабочей жидкости. [c.66]

    Кремний и германий как полупроводники используются, главным образом, для изготовления выпрямителей (диоды) и усилителей (триоды), которые широко применяются в радиотехнических конструкциях, электронных вычислительных машинах и т. д., а также в приборах, построенных на основе использования термоэлектрического эффекта в термисторах, термосопротивлениях. [c.96]

    Улучшение чувствительности ЯМР-спектрометров. ЯМР-спектроскопия отличается невысокой чувствительностью. Главная причина этого состоит в небольшой разности заселенностей ядерных энергетических уровней и, как следствие, легкости достижения состояния насыщения (равная заселенность уровней). В этом состоянии поглощение ядрами энергии извне прекращается и спектр записать невозможно. Во избежание насыщения образец облучают очень слабым источником электромагнитного излучения (его мощность составляет, как правило, не более нескольких милливатт). Доля поглощенного излучения не превышает 10 мощности генератора, т. е. составляет 10 —10 Вт. Чтобы зарегистрировать такой слабый сигнал, его нужно многократно усилить. При этом неизбежно в систему усилителя просачиваются посторонние сигналы (шум), которые также подвергаются усилению и создают фон. Если магнитных ядер мало или их сигнал слабый, то резонансный пик может потонуть в шуме и мы его не заметим. [c.46]


    По данному уравнению и передаточным функциям корректирующего устройства (3.210), электрогидравлического усилителя мощности (3.184) и гидравлического исполнительного механизма (3.112) вместе с зависимостью у (5) = кс.пУя ( 5) составим структурную схему линейной математической модели следящего привода с электрическим управлением и электромеханическим корректирующим устройством (рис. 3.30). Если просуммировать главную и дополнительную обратную связи, то регулирующий [c.258]

    Чувствительность молекулярного анализа определяется в большинстве случаев характеристиками спектрофотометров. В двухлучевых приборах главную роль играет чувствительность и собственные шумы приемника света и усилителя. Стабильность источника сплошного света не играет большой роли, так как измеряют относительную интенсивность двух пучков, распространяющихся от одного источника. Чувствительность абсорбционного анализа зависит от наименьшей разности двух световых потоков, которую можно надежно обнаружить, она определяется шумами приемника света или усилителя. Поэтому, чем меньше шумы, тем выше чувствительность анализа. [c.330]

    Применяют в резиновой промышленности в настоящее время главным образом сепарированный мел в дозировках до 60—70% от массы каучука. Активированный мел является усилителем для дивинил-стирольных и натрий-дивиниловых каучуков. Он повышает предел прочности при растяжении вулканизатов до 100 кгс см , увеличивает эластичность, сопротивление раздиру и истиранию. [c.167]

    В системах ручного и автоматического управления различными машинами и производственными операциями нашли применение главным образом гидравлические усилители следящего типа (следящий гидропривод), с помощью которых выходу (ведомому звену) сообщаются движения, согласованные с определенной точностью с перемещением входа (органа управления) при требуемом усилении выходной мощности (усилия или момента), получаемом путем использования энергии подаваемой жидкости. Ввиду этого впредь понятие гидроусилителя условно отождествляется с понятием следящий гидропривод . [c.459]

    Из большого числа корректирующих цепей [41 в следящих приводах с дроссельным регулированием преимущественно применяются отрицательные обратные связи. В некоторых случаях последняя охватывает только часть следящего привода, например объемный двигатель и усилитель мощности, в других — почти весь. Дополнительный отрицательный сигнал поступает в сравнивающее устройство вместе с сигналом главной обратной связи. [c.248]

    К регуляторам предъявляются очень высокие требования точности и чувствительности (допускаемая нечувствительность не превышает 0,05% по отклонению скорости). Для достижения этого между чувствительным элементом и главным золотником приходится ставить промежуточные усилители, состоящие из небольших золотников и сервомоторов, с помощью которых и перемещается главный золотник. [c.281]

    Электрогидравлические регуляторы ЭГР турбин приобретают за последние годы все более широкое распространение. Они отличаются от гидромеханических тем, что у них чувствительный элемент, элементы стабилизации и часть органов управления электрические. Не вдаваясь в детали схем, отметим лишь, что принцип работы ЭГР не отличается от рассмотренного гидромеханического регулятора. Но у ЭГР все сигналы выдаются не в виде смещений, как на рис. 8-1, а в виде величин напряжения или тока. Электрические сигналы преобразуются в смещения и далее схема переходит в чисто гидромеханическую (начиная с промежуточных усилителей к главному золотнику). Преимущество ЭГР состоит в том, что с их помощью гораздо легче осуществлять уравнивание между несколькими турбинами и другие операции так называемого группового регулирования несколькими агрегатами сразу. [c.281]

    Другими сло вами, средняя амплитуда импульсов на выходе усилителя для последовательности импульсов рентгеновского излучения с фиксированной энергией прямо пропорциональна энергии рентгеновских фотонов при условии, что счетчик работает в пропорциональном режиме и главный усилитель — в линейной области. [c.201]

    Главный усилитель и устранение наложения импульсов [c.223]

Рис. 5.27. Форма импульсов главного усилителя спектрометра с дисперсией по энергии для различных постоянных времени. Рис. 5.27. <a href="/info/122855">Форма импульсов</a> главного усилителя спектрометра с дисперсией по энергии для <a href="/info/1514062">различных постоянных</a> времени.
    Если амплитуда импульса широкополосного усилителя выше уровня ограничения дискриминатора (точка 4 , сигнал (точка 7) направляется в устройство контроля наложения импульсов, которое может не пропустить сигнал с выхода главного усилите.дя к многоканальному анализатору (точка 5). Можно блокировать либо оба импульса, если второй импульс приходит прежде, чем первый достигнет своего максимального значения, либо только второй, если первый импульс прошел максимальное значение и обработался многоканальным анализатором, но уровень сигнала не достиг базовой линии. Правильная установка дискриминатора весьма критична, так как, если уровень слишком низкий, шум будет восприниматься как рабочие импульсы, вызывая их ненужное подавление однако если уровень слишком высок, то низкоэнергетические импульсы пройти не смогут. Поэтому подавление импульсов труднее осуществить для низкоэнергетического рентгеновского излучения, которое трудно отделить от шума. На рис. 5.30 сравниваются два спектра железа, полученные при использовании схемы подавления наложения импульсов [c.226]


Рис. 5.33. Взаимосвязь скорости счета на выходе и входе главного усилителя для 1)азличных значеннй длительности импульса (мкс) и разрешения (эВ). Рис. 5.33. <a href="/info/365162">Взаимосвязь скорости</a> счета на выходе и входе главного усилителя для 1)азличных <a href="/info/1864905">значеннй длительности</a> импульса (мкс) и разрешения (эВ).
    Прибор. Кулонометр, использованный в работе, подобен прибору, спроектированному Буменом [305]. В работе дана его блок-схема и схема без усилителей. Главные элементы прибора— типовые решающие усилители с очень высоким усилением, которые используются в электронных моделирующих устройствах. В приборе применены три таких усилителя, два из которых работают в схеме потенциостата, а один является интегратором тока. Принцип работы кулонометра был кратко описан выше. [c.225]

    Тетрил — силыюо взрывчатое вещество, инициирование взрыва которого осуществляется значительно легче, чом ТНТ. Он иснользуется главным образом для военных целей как усилитель взрывной силы заряда ТНТ. Тетрил имеет высокую температуру плавления 129°, что исключает возможность добавок к нему примесей при его отливке. Он обычно заирессо-нывается во взрывные устройства (снаряды). Как взрывчатое вощество для мирных целей тетрил используется на подрывных работах в качестве капсуля сильного взрывного действия для инициирования взрыва динамита. [c.554]

    Регулирование выходного тока и напряжения агрегата происходит за счет воздействия управляющего сигнала на главный регулятор, в качестве которого в агрегатах питания последних моделей используют магнииные усилители и тиристоры (управляемые кремниевые диоды). [c.232]

    Подробно принцип действия многоканального анализатора будет рассмотрен ниже в разделе, посвященном рентгеновской спектроскопии с диоперсийй по энергиям. Здесь достаточно сказать, что при помощи многоканального анализатора можно определить амплитуду каждого импульса от главного усилителя и адресовать его для накопления е одну из набора ячеек запоминающего устройства, которая соответствует заданному интервалу амплитуд импульса. Например, если на 10 В отводится 100 каналов, то импульсы с амплитудой от О до 0,1 В направля- [c.202]

    Из-за малости собираемого заряда важным является снижение шумов. Об охлаждении кристалла детектора и первого каскада предусилителя на полевом транзисторе упоминалось выше. Дополнительной мерой является использование импульсной оптической обратной связи (ИОС), как показано на рпс. 5.18. С помощью этого метода шумы, обычно связанные с резистивной обратной связью в предусилителях, исключаются за счет простого отказа от использования какой-либо обратной связи для отвода из детектора накопленного заряда. Такое состояние не может существовать неопределенно долго, поэтому, когда напряжение иа выходе предусилителя достигнет заданного значения, включается светодиод, вызывающий появление тока утечки п полево.м транзисторе, в результате чего он возвращается в начальное рабочее состояние. При включении цепи оптической обратной связи возникают значительные шумы, поэтому на этот промежуток главный усилитель необходимо запирать. В настоящее время предусилители с оптической импульсной обратной связью применяются большинством фирм-изготовителей, за исключением фирмы ОКТЕС, которая достигает того же эффекта с помощью так называемого метода динамического восстановления заряда , не требующего специального запирания усилителя, [c.215]

    Проблема получения оптимального энергетического разрешения зависит не только от качества кристалла-детектора, окружающей его среды и связанной с предусилителем электроникой, но также и от рабочих характеристик главного усилителя. Для системы 51 (Ь )-детектора это имеет в особенности критическое значение, поскольку в отличие от кристалл-дифракционного спектрометра вся спектральная дисперсия осуществляется в электронной системе. Для обеспечения макоимальной линейности, низкого уровня шумов, быстрого восстановления при перегрузке и стабильности при высоких скоростях счета должны использоваться специальные схемы. Большинство промышленных усилителей снабжено схемами гашения для компенсации выброса импульса, когда используется внутренняя связь по переменному току, и схемой восстановления постоянной составляющей для привязки базовой линии импульсов к постоянному [c.223]

    Для достижения максимально возможного энергетического разрешения для системы с дисперсией по энергии необходимо, чтобы главный усилитель имел достаточное время обработки каждого импульса с тем, чтобы получить максимальное отношение сигнал/шум. Это на практике означает, что оператор должен выбирать большую постоянную времени (т), обычно —10 МКС. Форма импульсов на выходе главного усилителя для т = 1, 6 и 10 мкс приведена на рис. 5.27. Важно отметить, что время, требуемое для возврата к базовой линии выходных импульсов при т=10 мкс, больше 35 мкс, в то время как при т=1 мкс требуется менее 5 мкс. Следо1вательно, использование больших постоянных времени, необходимых для достижения максимального разрешения, одновременно увеличивает вероятность того, что второй импульс поступит в главный усилитель прежде, чем пройдет первый. Этот момент также показан на рис. 5.27. Видно, что амплитуда импульса И, следующего через 20 мкс после импульса I, будет правильно оценена в 4 В при т=1 мкс, но составит 4,5 В при т = 6 мкс и 6,5 В при т=10 мкс. Если в реальной экспериментальной ситуации принимались бы такие импульсы, то соответствующие большим т были бы неверно определены в памяти многоканального анализатора и, следовательно, появились бы в неверных каналах электронно-лучевой трубки. Исключение таких случаев осуществляется в электронике системы при помощи схемы подавления наложения импульсов, блок-схема которой приведена на рис. 5.28 [109]. На рис. 5.29 даны эпюры напряжений на выходе соответствующих блоков в отмеченных точках. Сбор заряда в детекторе происходит очень быстро по сравнению с другими процессами, обычно за время порядка 100 не (точка /). В результате интегрирования этого заряда предусилителем получается ступенча- [c.224]

    Смысл различия между реальным и живым временами иллюстрирует рис. 5.28. Расположенные через равномерные интервалы тактовые импульсы в точке 9 (рис. 5.29) соответствуют фактически истекшему времени (реальное время). По величине оно, однако, может отличаться от живого действующего времени, которое фактически представляет собой период, в течение которого система не занята обработкой имлульсов. На рис. 5.29 видно, что в показанном временном интервале укладывается 14 импульсов реального времени (точка 9). В течение этого периода импульс задержки цепи контроля мертвого времени (точка //), вырабатываемый комбинацией сигналов от работающих усилителя (точка 6) и многоканального анализатора, ограничивает число импульсов живого времени (точка 10) для того же интервала реального времени только до трех. Влияние такой потери импульсов иллюстрируется на рис. 5.33, где показано, что только при низких скоростях счета (меньше 2000 имп./с) скорости счета на входе многоканального анализатора и главном усилителе равны. По причине, описанной выше, по мере увеличения скорости счета на входе усилителя влияние наложения И мпульсов становится все более ощутимым, особенно при больших постоянных времени усилителя. Поэтому при качественном анализе для достижения желаемого уровня точности, основанного на статистике счета, может возникнуть необходимость производить счет в течение большего периода, чем предполагаемый на основе реального времени. При количественном анализе во всех случаях должно использоваться живое время, поскольку отношения интенсивностей рентгеновского излучения с образцов и эталонов при одинаковых условиях измерения служат исходными данными для всех моделей количественных поправок. Рис. 5.33 демонстрирует также, что увеличение скорости счета на входе усилителя при изменении тока зонда или при перемещении детектора ближе к образцу будет приводить сначала к линейному увеличению скорости счета на входе многоканального анализатора, за которым следует нелинейная область, в которой скорость счета на входе многоканального анализатора растет медленнее, чем на входе главного усилителя. В конечном счете достигается ситуация, когда увеличение скорости счета на входе главного усилителя в действительности приводит к уменьшению скорости счета многоканального анализатора. Дальнейшее увеличение скорости счета приводит по существу к 100%-ному мертво му времени и, следовательно, к общей блокировке системы. Рис. 5.33 иллюстрирует также, что начало различных отмеченных областей определяется выбором рабочих кривых на основе критерия приемлемого разрешения. [c.229]

    Главный усилитель следует также тщательно устанавливать. В общем его необходимо удалять от трансформаторов и таких устройств, как компьюторы и счетчики импульсов, содержащих большие логические схемы. [c.234]

    Основные компоненты многоканального анализатора приведены на рис. 5.46. Они включают в себя аналого-цифровой преобразователь (АЦП), запоминающее уст1ройство и различные выходные устройства. Аналого-цифровой преобразователь преобразует импульс напряжения от главного усилителя в цифровой сигнал. Выходной сигнал с АЦП служит затем адресом канала запоминающего устройства, где выполняется операция прибавления единицы. В действительности, запоминающее устройство работает как система независимых счетчиков, подсчитывающих количество импульсО В в заданном интервале амплитуд. В приведенном примере канал с номером О соответствует импульсам с амплитудой от О до 1 В, канал 1 —импульсам с амплитудой от 1 до 2 В и т. д. до канала с номером 7, который считает импульсы с амплитудой от 7 до 8 В. При работе вначале все записанное в памяти стирается, затем первый импульс (2,5 В) считается в канале 2, второй (4,3 В) —в канале 4 и третий (2,1 В) также в канале 2. По истечении предварительно заданного времени сбора данных (тактового или действующего) содержимое памяти многоканального анализатора может быть выдано на печать, воспроизведено на экране электроннолучевой трубки или записано на самописце (не показан). [c.247]

    Блок-схема обычного АЦП представлена на рис. 5.47, а эпюры напряжений в соответствующих точках даны на рис. 5.48. Импульсы от главного усилителя проходят в начале через повторитель, требуемый для обеспечения возможности подключения к последующим каскадам электронной схемы. Выход (точка А) контролируется дискриминаторами верхнего и нижнего уровней, устанавливаемых оператором. Импульсы, не удовлетворяющие заданным уровням, задерживаются схемой совпадения. Каждый пропущенный импульс, одновременно вызывающий появление импульса на выходе одноканального анализатора, поступает на пиковый детектор и, к роме того, заряжает конденсатор расщирителя пика до максимального напряжения импульса (точка ). Если амплитуда импульса превыщает аналоговый нулевой уровень НУ (также устанавливаемый оператором), соответствующий логический сигнал (точка Г) в комбинации с импульсом пикового детектора (точка В) запускает схемы расщиритель импульсов занят (РИЗ) и АЦП занят . [c.248]

    Анализ рис. 5.47 и 5.48 дает теперь возможность понять ряд терминов, используемых в сочетании с многоканальными анализаторами. Коэффициент преобразования сигнала в АЦП относится к общему количеству приращений (адресов), используемых для характеристики распределения измеренных импульсов. Выбираемые с помощью переключателя значения обычно лежат в диапазоне от 32 до 8192 с множителем 2. В действительности коэффициент преобразования определяет разрещение АЦ-преоб-разователя путем контроля скорости разряда конденсатора расщирителя. Это определяет количество тактовых импульсов, которое должно быть подсчитано для импульса от главного усилителя данной амплитуды. В обозначениях рис. 5.48 форма сигнала в точке Б, наклон и, следовательно, время, требуемое [c.249]


Смотреть страницы где упоминается термин Усилитель, главный: [c.282]    [c.155]    [c.57]    [c.57]    [c.391]    [c.162]    [c.318]    [c.208]    [c.200]    [c.200]    [c.200]    [c.202]    [c.205]    [c.211]    [c.226]    [c.232]    [c.237]    [c.246]    [c.250]   
Растровая электронная микроскопия и рентгеновский микроанализ том 2 (1984) -- [ c.211 , c.223 , c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Усилитель



© 2025 chem21.info Реклама на сайте