Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пробоотбор

    Рнс. 8. Стационарный пробоотбор- Рис. 9. Стационарный пробоотборник [c.37]

    Необходимо заметить, что в системе ГОСТ Р имеется ГОСТ 24614-81 Жидкости и газы, не взаимодействующие с реактивом Фишера. Кулонометрический метод определения воды . Данный нормативный документ регламентирует проведение измерений любой жидкости, не реагирующей с реактивом Фишера, то есть не создающей аналитических помех. В принципе это может быть и нефть, нефтепродукты и энергетические изоляционные масла. Однако в существующем виде этот стандарт не может быть использован для измерений воды в нефти без дополнительной переработки и адаптации поскольку, во-первых, в нем не учитывается специфика такого объекта, как нефть с водой. Поэтому пробоотбор и пробоподготовка, имеющие решающее значение для точности измерения, ока- [c.254]


    При проектировании пробоотборные линии от нескольких точек сводятся в одно помещение, оборудованное вытяжной вентиляцией. Это упрощает процесс отбора проб и повышает его безопасность. Перед взятием пробы необходимо освободить линию пробоотбора от застоявшегося продукта. Для этого отбираемый продукт в течение некоторого времени сливается в специальный сборник либо возвращается в систему. [c.31]

    Для пробоотбора служит электромагнитная маятниковая подвеска, вдоль которой стекает струя конденсата или охлажденной жидкости. Применение подобной маятниковой подвески вместо ранее использовавшейся качающейся воронки имеет то преимущество, что это позволяет исключить два стеклянных шлифа на каждом месте пробоотбора. Другой характерной особенностью при- [c.90]

    Примен ая при испытании приставка или головка также должна гарантировать при минимальном мертвом объеме возможность отбора жидкости по каплям без ее соприкосновения со смазкой крана. Аналогичное пробоотборное устройство показано на рис. 100. До установления стационарного режима работы колонны маленькая воронка 4 повернута вниз. Для отбора пробы воронку 4 поворачивают вверх и осторожно подсасывают жидкость путем присоединения патрубка 7 к вакуумной линии при медленном открывании зажима. После отбора 0,1—0,2 мл жидкости, которая капает в приемник 8 через большое отверстие в пробке крана 6, этот кран, а также зажим на вакуумной линии закрывают, а кран 5 осторожно и ненадолго открывают благодаря этому находящаяся в воронке 4 жидкость вытесняется обратно в колонну. Приемник 8 сообщается с атмосферой через патрубок 7. При работе в условиях атмосферного давления в патрубок 7 подают воздух для полного удаления жидкости из трубки для отбора проб, расположенной в нижней части приемника 8. Другие возможные способы пробоотбора обсуждаются в разд. 7.5.3 (см. также [39] к гл. 1). [c.157]

    Применение анализаторов в качестве датчиков для автоматической стабилизации показателей качества затруднено целым рядом причин. Прежде всего — это вводимое анализаторами большое запаздывание в системе регулирования. По зарубежным данным [47] запаздывание реакции установленного на объекте анализатора начала кипения на изменение границы кипения фракции в колонне имеет порядок 1—4 ч. Для анализаторов конца кипения этот показатель будет еще большим . Запаздывание вызвано инерционностью системы пробоотбора и нагрева пробы, а также транспортным запаздыванием между точкой отбора пробы (обычно на выкиде соответствующего насоса) и местом расположения бокового отбора. Другой причиной, ставящей под сомнение целесообразность применения анализаторов в САР, является несовершенство пробоотборных систем, усугубляющееся большим содержанием катализаторной пыли в продуктах крекинга. Все это приводит к ненадежной работе анализаторов. И, наконец, третьей [c.73]


    Приведенные графики также показывают, что чем меньше соотношение а, тем меньше вероятности измерительных ошибок. При изменении а от 1 2 до 1 3 вероятность Р уменьшается примерно в 1,5 раза, вероятность Рг - примерно на 20 %. При изменении а от 1 2 до 1 5 Р] уменьшается примерно в 3 раза, вероятность Рг - примерно в два раза. Таким образом, а является эффективным способом повышения достоверности измерений. Так как СКО результата многократных измерений равняется (Т /7п, его снижение достигается увеличением числа п независимых измерений контролируемого параметра. При этом важно иметь в виду, что, поскольку погрешность пробоотбора является самой значительной составляющей случайной погрешности измерений контролируемого параметра, необходимо провести не п измерений этого параметра в одной пробе, а его параллельные измерения во всех пробах. [c.219]

    Стандартизация и контроль всей цепи контроля качества (пробоотбор, транспорт пробы в лабораторию, регистрация и хранение проб, пробоподготовка, процедура измерения, регистрация результата, поверка оборудования и т.д.), ибо только это в целом обеспечивает надежный анализ качества. [c.240]

    Заметим, что, как правило, суперэкотоксиканты присутствуют в окружающей среде в ничтожно малых количествах, на уровне следов. Поэтому их определение в природных матрицах зачастую сродни поиску иголки в стоге сена и влечет за собой использование специальных методов пробоотбора и подготовки образцов к анализу. Сложность аналитической задачи, необходимость получения надежных и достоверных данных заставляет применять для определения суперэкотоксикантов наиболее чувствительные и селективные методы современной аналитической химии, включая те, которые моделируют процессы в живой природе Кроме того, самостоятельную проблему представляют метрологические аспекты определения суперэкотоксикантов на уровне следовых количеств. [c.5]

    Приборы, позволяюш,ие исключить контакт обслуживающего персонала с вредными и токсичными веществами. К этой группе относятся, прежде, всего, промышленные анализаторы качества нефтепродуктов на потоке, например агрегатирован-ные комплексы, анализирующие температуры кипения и вспышки нефтепродуктов. Эти приборы автоматически отбирают пробу из аппарата или трубопровода, подготавливают ее к анализу, анализируют и эвакуируют проанализированный продукт с установки. В этой операции исключаются пробоотбор-щицы и лаборанты. Применение промышленных анализаторов позволяет усовершенствовать технологический процесс, поскольку дает возможность управлять им по показателям качества продуктов. [c.170]

    Проследим взаимное влияние технологической схемы схемы автоматизации процесса, а также рассмотрим юсобы трубопроводной обвязки первичных приборов, стем пробоотбора и исполнительных механизмов. По стальным вопросам, касающимся автоматизации, сле-ует обратиться к специальным работам, посвященным втоматическому регулированию и управлению - . [c.11]

    Достаточно универсальными аппаратами для исследования кинетики являются различного рода сосуды с перемешиванием и с устройствами пробоотбора. При работе без давления ими могут служить просто многогорлые стеклянные колбы, снабженные мешалкой, термометром, пробоотборниками для жидкой и газовой фаз. Такое устройство может работать как в статическом режиме (особенно для систем жидкость — жидкость), так и в проточном в качестве дифференциального реактора. Твердый катализатор, однако, в данном случае может применяться только в виде порошка. Достаточно элементарный вариант такой схемы, взятый из монографии [6], приведен на рис. 4.4. [c.68]

    Головка колонны по нормалям сДестинорм с устройством для капельного пробоотбора без застойных зон  [c.156]

    За рубежом пробоотбор регламентируется методикой ASTM D 4177 Стандартный метод автоматического пробоотбора нефти и нефтепродуктов . Это рамочная методика, очерчивающая общие технические требования к пробоотборным системам. Высоким техническим искусством обладают производственные или инжиниринговые фирмы, способные выпускать квалифицированные пробоотборные системы, отвечающие требованиям ASTM D 4177 и обеспечивающие представительность пробоотбора. Дизайн этих систем и технические средства обеспечения представительного пробоотбора составляют ноу-хау этих фирм. [c.251]

    В проведенных оштах исследовалось превращение активных ком-понекгов исходного газа по высоте слоя катализатора. В верхние крышки реакционных труб в слой катализатора вводились пробоотбор- [c.138]

    Время получения результата, мин Пробоотбор - непрерывный, 3-5 мин. Транспорт пробы - непррыв-ный, до 20 мин в зависимости от длины линии. Анализ - 1 мин. Обработка результатов - автоматическая. Сопряжение с УСУ -сопрягается. Выдача сигнала в аналоговой или цифровой форме на Флоу-ПК или УСУ Проботбор - дискретный, 15 мин. Транспорт пробы -до 30 мин в зависимости от графика и удаленности точки замера. Анализ - 1 мин. Обработка результатов - автоматическая. Сопряжение с УСУ -сопрягается. Выдача результата через ЛАБТОП на Флоу-ПК или АСУ  [c.237]

    Погрешность измерений Пофешность измерений. Составляющие пофешности непредставительность пробоотбора, искажение при транспортировке пробы в анализатор, отличие среднего состава пробы от состава текущей пробы Пофешность измерений. Составляющие пофешности непредставительность пробоотбора, искажение при транспортировке пробы в анализатор, отличие среднего состава пробы от состава текущей пробы Близки Близки Близки Зависят от постоянства состава пробы [c.237]


    Нельзя сказать, чтобы проблемам определения суперэкотоксикантов ранее не уделялось должного внимания. Достаточно вспомнить, что такой анализ играет важную роль при решении задач санитарии и охраны труда в атомной и химической промьппленности, в контроле качества пищевых продуктов и фармацевтических препаратов, чему посвящена обширная литература [5-11]. Однако большинство работ этого плана по своей сути мало отличается от обычного определения примесей на уровне микро- и ультрамикроконцентраций. Качественные изменения произошли при решении задач экологии, медицины и других областей человеческой деятельности. Именно тогда на основе достижений физических и физикохимических методов анализа, прежде всего хроматографии и масс-спектрометрии, сформировалась самостоятельная область аналитической химрга - анализ суперэкотоксикантов. В настоящее время аналитическая химия суперэкотоксикантов имеет свои разработки по пробоотбору, выделению и разделению анализируемых компонентов, методам детектирования следовых количеств загрязнителей и др. Развитие этой области тем или иным образом оказьшает воздействие и на другие дисциплины, вызывающие в настоящее время повьппенный интерес со стороны широкой общественности, в частности на биохимию, клиническую химию и медицину, для которых проблема определения токсичных веществ на следовом уровне является весьма актуальной. [c.152]

    Система пробоотбора - про-боподготовки ( 7000 -10000 в зависимости от особенностей проекта). Кондиционированный КИПовский щкаф при расположении монитора вне анали заторной 12000 - 15000. Общая стоимость (без учета доставки, таможенного сбора и НДС) 124000-130000 [c.238]

    Очевидно, что вклад погрешности, обусловленный непредставительным пробоотбо-ром или неадекватной подготовкой пробы к анализу в случае таких неоднородных систем, как нефть-вода, будет очень весомым. Не исключено, что во многих случаях он значительно превысит погрешность инструментального измерения показателя. В то же время практически не существует методик оценки погрешности пробоотбора или пробоподготовки и ее вклада в общую погрешность измерений содержания воды. Однако эта составляющая неявно присутствует в практике учетно-расчетных операций. Она всплывает в виде разногласий или коммерческих споров между поставщиком и потребителем по результату измерения. Подчас создается парадоксальная ситуация, связанная с неопределенностью этого фактора. Измерительная аппаратура в лабораториях поставщика и потребителя практически идентична и сличена. В то же время расхождение результатов измерения проб, отобранных каждой лабораторией из одной партии нефти, отличается более чем на [c.251]

    Между ASTM D 4177 и ГОСТ 2517-85 Нефть и нефтепродукты. Методы отбора проб существуют явные и неявные разногласия. В этом плане перспективной является работа метрологических служб Госстандарта по сопоставлению национального и зарубежных стандартов на методы пробоотбора и их сближению за счет научно обоснованной корректировки ГОСТ, а также разработка рекомендаций по оценке их погрешности. [c.252]

    Следовательно, снижение уровня пофешности при пробоотборе является главной предпосылкой для получения надежных данных при осуществлении эколого-аналитического мониторинга. Оценка адекватности отобранной пробы контролируемому объекту настолько сложна, >гго в подавляющем большинстве методик при оценке пофешности определений а priori предполагается правильность пробоотбора. Суммарную ошибку связывают только с процедурами пробоподготовки и анализа пробы. Для решения указанной проблемы применяют следующие подходы 31  [c.158]

    Вполне очевидно, что успехи в решении задач эколого-аналитического мониторинга суперэкотоксикантов во многом зависят от эффективности аналитического контроля. Для получения достоверной и надежной информации о содержании загрязняюпщх веществ пробоотбор дотокен производиться так, чтобы анализируемые образцы бьши типичными для природных объектов. Представительными являются такие пробы, в которых содержание определяемых ингредиентов не изменяется при отборе проб, их хранении и транспортировке к месту анализа. Иными словами, отношение матрицы к анализируемым компонентам должно оставаться постоянным как в общей массе исходного материала, так и во взятой пробе. Изменение состава матрицы во времени может происходить, например, из-за переменного состава воды в реке или флуктуаций состава дымовых газов промьппленных предприятий. [c.169]

    Таким образом, во всей процедуре пробоотбора критическим параметром является репрезентативность пробы, т е ее соответствие составу исходного материала. Однако при определении суперэкотоксикантов, содержащихся в следовых количествах в образце, часто приходится работать с неоднородными матрицами, что усложняет как пробоотбор, так и анализ в целом. Для неоднородных материалов иногда щ)ибегают к стратификации (разделению пробы на более однородные части). Этот важный прием широко используется в статистических процедурах с применением классического дисперсионного анализа. При этом представительность и оценка однородности пробоотбора обеспечиваются планом отбора проб и способом их рандомизации, т е. возможностями попадания определяемого вещества в пробу. В последнее время для прослеживания за однородностью проб и воспроизводимостью методов пробоот(юра во времени широко используются контрольные карты [1]. [c.170]

    Пористые полимерные сорбенты используют для пробоотбора суперэкотоксикантов так же широко, как и активные угли. Они относительно инертны, гидрофобны и имеют достаточно высокую сорбционную емкость. В зависимости от последней их подразделяют на три фуппы с высокой емкостью (карбосфер, хромосорб 102, XAD-7) со средней емкостью (XAD-2, хромосорб 106, порапаки R и S) с низкой емкостью (тенакс G , хромосорбы 104 и 105). В этом случае характеристикой сорбционных свойств служат значения удельных объемов удерживания органических соединений различных классов на данном сорбенте при фиксированной температуре. Большинсгво полимерных сорбентов плохо удерживают воду, что является их достоинством при работе с влажным ]76 [c.176]

    Так, весьма селективным сорбентом по отношению к хлор- и фосфорсодержащим пестицидам, ПХБ, ПХДД, ПХДФ и ПАУ жляется пенополиуретан (ППУ) плотностью 0,021 г/см , известный в быту как поролон. Он относительно дешев, прост в изготовлении, легко меняет свою форму и позволяет производить пробоотбор с высокой скоростью. Малолетучие ХОС почти полностью задерживаются ППУ, в то время как достаточно летучие вещества, например альдрин, сорбируются лишь на 50%. Фосфорсодержащие пестициды поглощаются ППУ на бб-вб /о, а ПХБ - на 70-85%. Блок из пенополиуретана толщиной 15 см способен полностью поглотить примеси ПХБ из 2700 м [32-35]. Для отбора гфоб воздуха на содержание ПХБ в индустриальных зонах используют и ам-берлит ХАО-2 [36,37]. Подобно пенополиуретану и ХАВ-2, хорошими сорбционными свойствами по отношению к ХОС обладают тенакс ОС, хромосорб 102, порапак Я [7]. Подтверждением высокой эффективности указанных сорбентов служат данные, представленные в табл. 5.3, [c.177]

    Среди полимерных сорбентов большинство аналитиков п1 юдпочи-тают тенакс ОС, порапаки и хромосорбы. Как уже отмечалось вьппе, тенакс обладает высокой термической стабильностью, что облегчаег термодесорбцию примесей при извлечении из ловушки. Порапаки имеют большой диапазон полярности. Полимерные хромосорбы подобны порапакам и используются для конценфирования полифункциональных органических соединений кислого и основного характера. Чаще других сорбентов этого типа при пробоотборе применяют хромосорб 102, имеющий наибольшую удельную поверхность и позволяющий извлекать из воз. уха ХОП. [c.177]

    Заметим, что поглощение примесей растворами (барботирование возду ха через жидкий поглотитель) относится к одному из наиболее часто применяемых способов и позволяет использовать высокие скорости пробоотбора (до 30-50 л/мин) [24,40,41]. Преимуществом данного способа является также то, что для последующего определения можно брать гишк-вотную часть раствора или (в случае парофазного варианта) паров над ним К недостаткам абсорбционного пробоотбора следует отнести невозможность получения представительной пробы при наличии в воздухе аэрозолей и твердых частиц, что характерно для большинства суперэкотоксикантов, а также невысокие коэффициенты концентрирования. Кроме того, при отборе больших объемов существенно возрастает пофешность, связанная с испарением поглотительного раствора или потерей целевых компонентов из-за высоких скоростей аспирирования По этим гфичинам абсорбцию редко используют для извлечения указанных веществ из воздуха. Так, концентрирование ХОП осуществляют в поглотительных приборах, заполненных ДМФА [421 Д.пя извлечения хлорированных углеводородов и фосфорорганических пестицидов применяют раствор этиленгликоля в глицерине. [c.179]

    Ценность метода криогенного концентрирования определяется не только его высокой эффективностью, но и возможностью извлечения примесей, которые в других условиях (при обычной температуре) взаимодействуют с материалом ловушки, делая пробоотбор невьшолнимым Однако для любого варианта низкотемпературного концентрирования возможна конденсация водяных паров, что может привести к образованию в ловушке пробки Поэтому в большинстве случаев данный метод применяют на стадиях подготовки образца к анализу. На стадии пробоотбора криогенное концентрирование используют редко. При этом воздух предварительно пропускают через пафоны с осушителями, среди которых своей универсальностью выделяются молекулярные сита ЗА. [c.180]

    В практике пробоотбора при оценке зафязнений атмосферы в последние годы все шире применяют пассивный пробоотбор [43]. В отличие от обычно используемых методов, заключающихся в аспирации заданного объема воздуха, пассивный пробоотбор основан на принципе молекулярной диффузии определяемого вещества через полимерную мембрану и его адсорбции в слое сорбента. Соответствующие устройства отличаются простотой конструкции и обслуживания, компактностью, а также невысокой стоимостью Такие системы особенно удобны для кон-фоля токсичных веществ в течение длительного времени и в широком диапазоне концентраций. Основное достоинство метода - высокая избирательность благодаря выбору мембраны, которая пропускает в фубку с сорбентом лишь молекулы определенного размера. Пассивный хфобоот-бор делает реальной индивидуальную дозиметрию токсикантов, воздействующих на человека за определенный промежуток времени. При этом используют миниатюрные ловушки типа дозимефов. [c.180]

    Теоретические и практические аспекты применения пассивного пробоотбора подробно рассмофены в работах 144-47). В частности, в обзоре [45] проведено сравнение пассивного и активного методов отбора проб. В числе прочих значительное внимание уделено вопросам сорбции, описанию способов определения ряда атмосферных примесей. Следует заме- [c.180]

    С новой методологией извлечения и концентрирования токсичных примесей из воздуха связаны и недавно появившиеся в практике пробоотбора капиллярные ловушки [48,49]. Обычно они представляют собой короткие капилляры из кварца или боросиликатного стекла длиной от 5 до 100 см и диаметром 0,3-0,5 мм, внутренние стенки которых покрьггы микрочастицами (10-18 мкм) активного угля или других углеродсодержащих сорбентов. Воздух (2-20 мл) пропускают шприцем через капилляр и после термодесорбции анализируют методом газовой хроматографии с капиллярными колонками. Эту же технику применяют и при работе с микроловушками, внутренние стенки которых покрьггы пленкой неподвижной жидкой фазы или изготовлены из силоксанового полимера. [c.181]


Смотреть страницы где упоминается термин Пробоотбор: [c.171]    [c.32]    [c.72]    [c.238]    [c.251]    [c.252]    [c.2]    [c.19]    [c.39]    [c.39]    [c.158]    [c.158]    [c.169]    [c.170]    [c.170]    [c.172]    [c.172]    [c.174]    [c.176]   
Смотреть главы в:

Аналитическая химия Том 1 -> Пробоотбор

Статистика в аналитической химии -> Пробоотбор

Экологическая аналитическая химия -> Пробоотбор


Химический энциклопедический словарь (1983) -- [ c.479 ]

Аналитическая химия Том 2 (2004) -- [ c.2 , c.34 , c.49 , c.58 , c.665 ]

Статистика в аналитической химии (1994) -- [ c.8 , c.25 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.479 ]

Химия в атомной технологии (1967) -- [ c.280 ]

Организация исследований в химической промышленности (1974) -- [ c.256 , c.282 , c.307 ]




ПОИСК







© 2025 chem21.info Реклама на сайте