Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Твердые катализаторы

    Механизм гетерогенного катализа. Каталитическая реакция в газовой фазе в присутствии твердого катализатора имеет сложный механизм. Можно предположить, что реакции такого типа проходят через следующие этапы  [c.272]

    В качестве примера можно привести такие нарофазные и газовые реакции на твердых катализаторах, как каталитический крекинг, каталитическое дегидрирование, окисление этилена и нафталина и другие. Эти процессы, проводившиеся на гранулированных катализаторах, в настоящее время осуществляются преимущ,ественно на порошкообразных катализаторах в кипящем слое. [c.273]


    Каталитическое хлорирование в присутствии твердых катализаторов в противоположность рассмотренным выше фотохимическим реакциям и термическому хлорированию (которое будет рассмотрено дальше) не зависит от присутствия веществ, вызывающих обрыв цепей. Отсюда следует, что механизм этой реакции принципиально отличается от рассмотренного выше цепного механизма. [c.153]

    Рассмотрим реакцию А В на поверхности твердого катализатора. Молекула вещества А должна адсорбироваться на подходящем участке поверхности катализатора, после чего она может превратиться в молекулу вещества В. Этот процесс состоит из следующих стадий (рис. У1.2). [c.122]

    При дальнейшем увеличении скорости реакции рассчитанная величина уменьшается до тех пор, пока 1 становится величиной того же порядка или даже меньше по сравнению со средним диаметром пор. В этих условиях реакция в порах твердого катализатора практически не идет, потому что весь реагент расходуется на внешней поверхности твердых частиц. Если г с)—скорость реакции на единице поверхности катализатора, то полная скорость реакции на единицу внешней поверхности определяется уравнением  [c.98]

    Так как профиль концентраций, свойственный большинству разделительных массообменных процессов, характеризуется участками концентрирования, т. е. накопления тех или иных веществ, то это свойство в совмещенных процессах позволяет значительно повысить скорости химических реакций за счет создания для них благоприятных условий (например, размещение твердого катализатора, подвод тепла) в зонах с повышенной концентрацией реагентов. Это же обстоятельство позволяет увеличить селективность реакций за счет создания неблагоприятных условий (отсутствие катализатора, подвод хладагентов и другие) для вторичных и обратных процессов в зонах концентрирования продуктов реакции. [c.190]

    Физическая адсорбция не обладает значительной специфичностью. Благодаря этой особенности она используется для измерения удельной поверхности твердых катализаторов и твердых тел. В противоположность этому, хемосорбция, вследствие своей химической природы, очень специфична. [c.86]

    Реакции прямой конверсии могут осуществляться как в жид-кой фазе, так и на поверхности твердых катализаторов. [c.190]

    Для нефтеперерабатывающей и нефтехимической промышленности выбросы пыли не характерны. Но в этих отраслях имеются процессы, в которых выделяется значительное количество пыли, это прежде всего процессы с использованием твердых катализаторов и адсорбентов. Пыль образуется при транспортировке катализаторов и адсорбентов, их регенерации, измельчении, сушке и т. д. При проведении процессов в реакторах с псевдоожиженным слоем катализатора (каталитический крекинг, дегидрирование бутана) частицы катализатора ири многократном использовании уменьшаются в размерах и выносятся с потоком газов. [c.17]


    Явление изменения скорости протекания химической реакции, вызываемое различными катализаторами, называется катализом. Различают однородный (гомогенный) и неоднородный (гетерогенный) катализы. При неоднородном катализе катализатор и реагирующие вещества находятся в разных состояниях (фазах), при эюм часто катализатор является твердым телом, а реагирующее вещество находится в жидкой или газовой фазе. К последнему типу катализа относится и каталитический крекинг иногда такие каталитические процессы называют контактными, а твердые катализаторы контактными веществами или просто контактами. [c.44]

    Реакции такого типа протекают на поверхности твердого катализатора при гетерогенном газовом катализе. Пусть концентрация г-го компонента на поверхности катализатора во время реакции равна Спов (индекс г при с опускается). При переносе компонента возникает разность концентраций — Спов ( г — концентрация в свободном газовом пространстве), связанная со скоростью реакции следующей зависимостью  [c.213]

    Эти крайние и промежуточные случаи представлены на рис. 11-7 в виде диаграммы 1д (с/с ) = /(lgDa ) с критерием Боденштейна в качестве параметра. Из рис. 11-7 можно сделать вывод, что значения Во < 10 характерны только для трубчатых реакторов. Между числом реакторов смешения в каскаде т и критерием Боденштейна существует линейная зависимость, которая представлена на рис. 11-8, из которого следует, что каскад из 5—7 реакторов смешения хорошо приближается к реактору вытеснения, для 7 Во > 10. Увеличение т не вносит существенного улучшения. Для реакторов с твердым катализатором предложена следующая эмпирическая зависимость [6]  [c.209]

    Диффузия молекул к поверхности и от поверхности твердого катализатора обычно происходит быстро в газах и медленно в жидкостях. Поэтому для последних суммарная скорость реакции сильно зависит от размеров пор и доступности катализатора. При этом может оказаться, что реакция лимитируется диффузией (т. е. стадиями 1 и 5). Для газов этот случай является редким. На время ограничимся рассмотрением таких каталитических процессов, скорости которых определяются стадиями 2, 3 и 4. Предложены две модели строения сорбированного слоя реагентов па поверхности. Одна из них исходит из того, что сорбированный слой слабо связан с поверхностью и относительно свободно может мигрировать с одного места поверхности к другому. В предельном случае подвижный слои может быть представлен как двухмерный газ, сорбированный на поверхности. Наряду с этой моделью существует и модель сильной связи поверхностного слоя согласно такой модели, можно считать, что каждая сорбированная молекула образует химическую связь с некоторым атомом на поверхности катализатора. В таком локализованном слое миграция реагирующих веществ может медленно проходить либо за счет диффузии на иоверхности, либо за счет испарения и повторной адсорбции. Эти относительно медленные процессы могут лимитировать скорость реакции. [c.536]

    Наконец, следует отметить, что белки и ферменты, поскольку они являются макромолекулами, не обязательно должны иметь одинаковые структуры. Они могут состоять из ряда родственных, но несколько отличных молекул. В таком случае можно ожидать, что они будут характеризоваться дополнительными параметрами и их изотермы сорбции могут быть похожими на изотерму Фрейндлиха или сложную изотерму Ленгмюра. Такие тонкие различия оказываются часто не выявленными ввиду трудности, связанной с получением ферментов с воспроизводимой и постоянной активностью. Как и в случае твердых катализаторов, это до] некоторой степени объясняется изменением активных центров или их числа. Такие изменения могут обусловливаться наличием небольшого количества сильно сорбированных ионов, которые действуют как яды. [c.565]

    В случае диффузии газов к поверхности твердого катализатора через ламинарную пленку газа вышеуказанное уравнение при технических расчетах приводится обычно к следующему виду  [c.234]

    В отличие от других процессов нефтепереработки (перегонка нефти, термический крекинг и др.) при каталитическом крекинге приходится иметь дело не только с потоками жидкостей и газов, но и с потоками горячего сыпучего материала—катализатора. В связи с внедрением в промьппленность каталитического крекинга необходимо было разработать аппараты для контактирования паров и га .ов с твердым катализатором, а также создать технические приемы по его непрерывной циркуляции и регенерации. [c.57]

    Отличительной особенностью данной системы крекинга является то, что здесь процесс превращения углеводородов осуществляется в слое мелких частиц твердого катализатора, энергично и непрерывно перемешиваемых в реакторе восходящим потоком паров сырья и продуктов реакции. Регенерация катализатора проводится в отдельном аппарате, но также в слое взвешенных в газовом потоке частиц катализатора. [c.122]


    Для реакции в газовой фазе в присутствии твердого катализатора удобно выражать скорость реакции в расчете на единицу массы твердой фазы  [c.205]

    Пример У1П-1. Скорости каталитической реакции г,-, г[, г / и определены по -му продукту и отнесены соответственно к единице объема реагирующей жидкости (газа) V, единице объема реактора Уг, единице площади межфазной поверхности 3 и единице массы твердого катализатора W (без учета пор). Установить связь между г,- и г,- и г , Г и г . [c.206]

    Скорость некоторых реакций в газовой фазе возрастает в присутствии твердых катализаторов. Вследствие прохождения реакции через промежуточные этапы энергия ее активации становится меньше, чем в гомогенной фазе. Катализатор влияет на кинетику реакции, но стехиометрическое уравнение и состояние равновесия при этом не меняются. [c.271]

    Величина энергии активации зависит от природы используемого катализатора. Например, энергия активации реакции разложения аммиака, проводимой в гомогенной системе, составляет 78 ккал/моль в присутствии же различных твердых катализаторов она имеет следующие значения  [c.271]

    Реакции могут быть гомогенные (однофазные) и гетерогеину.ю (многофазные). Примером гомогенной реакции являотся пиролиз газообразных углеводородов. Все нарофазные реакции на твердых катализаторах являются гетерогенными реакциями. [c.262]

    Скорость химических превращений, проводимых в присутствии твердого катализатора, часто относят к единице его массы. В этом случае скорость превращения, отнесенная к единице объема реактора, рассчитывается по формуле  [c.318]

    Ускорение реакции при изменении ее механизма может быть обеспечено не только вследствие введения катализатора, приводящего к возникновению цепных превращений в гомогенной системе. Очень часто изменение механизма процесса вызывается применением твердого катализатора. В наиболее простом случае в роли такого катализатора выступает стенка реакционного сосуда. Понижение энергии активации в присутствии твердого катализатора тоже может быть очень значительным. Например, для реакции разложения аммиака энергия активации в газовой фазе составляет 78 ккал/моль, а в присутствии вольфрама—только 42 ккал/моль (см. стр. 271). [c.417]

    Следует отметить, что воздействие твердого катализатора не всегда ограничивается снижением энергии активации Е превращения  [c.417]

    По сравнению с трубчатым реактором для проведения гомогенной реакции контактный аппарат представляет собой более сложную систему. С одной стороны, сложнее будет ход химического превращения, с другой, наличие твердого катализатора усложняет процессы, тепло- и массопереноса. [c.466]

    В тех случаях, когда скорости гетерогенных химических реакций, проводимых на твердых катализаторах, лимитируются диффузией реагируюищх веществ к зоне реакции, часто оказывается целесообразным применять тонко измельченные катализаторы для ускорения внутренней диффузии и создавать интенсивное перемешивание в зоне реакции с целью увеличения скорости внешней диффузии. Для систем жидкость — жидкость скорость реакции может лимитироваться диффузией молекул из объема к поверхности раздела фаз и через пограничный слой. Для интенсификации процесса в системах жидкость — жидкость увеличивают поверхность фазового контакта реагирующих веществ путем увеличения их степени дисперсности и интенсивного перемешивания. [c.273]

    Классификация катализа и каталитических реакций. По агрегатному состоянию реагирующих веществ и катализс1Тора разли — чают гомогенный катализ, когда реагенты и катализатор находятся в одной фазе, и гетерогенный катализ, когда каталитичс ская система включает несколько фаз. В нефтепереработке гетерогенный катализ, особенно с твердым катализатором, распространен значительно больше, чем гомогенный. [c.80]

    Гранулированный твердый катализатор располагается в реакторе в лромежутках между поверхностями охлаждения и омывается в направлении сверху вниз потоком синтез-газа. Путем использования нового катализатора и новых данных по теплопередаче и массообмену в зернистых материалах, при разработке которых большая роль принадлежала Бротцу [70], выход продуктов синтеза с реактора удалось увеличить с 2 до 50 т [71]. [c.127]

    Лроцесс Сульфрин . В этом процессе реакция Клауса протекает на твердом катализаторе (окиси алюминия) при 125—150°С. При такой низкой рабочей температуре термодинамическое равновесие благоприятнее, чем при обычных условиях Клаус-установки. [c.190]

    Вследствие нечувствительности каталитических реакций хлорирования по отношению к веществам, вызывающим обрыв цепи, на основе этого метода удалось разработать процессы, при которых возможно полностью испо.тьзовать хлор. Проведение процесса в присутствии кислорода или содержащих кислород газов и твердых катализаторов, применяемых нри процессе Дикона, позволяет снова получить из образующегося хлористого водорода свободный хлор [43]. [c.153]

    Достижение равновесия 502С12 502+ СЬ ускоряется не только твердыми катализаторами, ш и многочисленными органическими веществами. [c.185]

    Условия режима быстрой реакции в порах твердого катализатора рассматривались в разделе 3.4. Было показано, что если глубина проникновения X намного меньше половины толщины ката-лизаторной частицы Ф, то фактор эффективности катализатора приближенно описывается уравнением (3.30)  [c.98]

    Гетерогенные катализаторы. Под термином "гетерогенный катализатор" подразумевают обычно твердый катализатор, нашедший преимущественное применение в каталитических процессах химр ческой технологии. [c.81]

    В гетерогенном катализе на твердом катализаторе промежуточное химическое взаимодействие реактантов с катализатором осуществляется лишь на его доступной для молекул реагирующих веществ так называемой реакционной поверхности посредством адсорбции. Удельная реакционная поверхность гетерогенного катализатора определяется его пористой структурой, то есть количес — твом, размером и характером распределения пор. [c.85]

    Для гетерогенного катализа, протекающего на поверхности твердых катализаторов, имеют значение все формы г1дсорбции, однако решающая роль в гетерогенном катализе принадлежит хемосорбции все гетерогенные каталитические процессы начинаются с хемосорбции и заканчиваются практически хемодесорбцией. [c.87]

    В то же время он не противопоставляет между собой химии далътонидов и бертоллидов, а утверждает о единстве прерывности и непрерывности при химичес — ких превращениях вещества как проявлении диалектического закона "Замечательная мысль Гегеля о том, что величина в непрерывности имеет непосредственно момент дискретности, получает здесь реальное осуществление". Значительно легче и логичнее объяснять экспериментальные факты неоднородности, если принять, что повеохность твердого катализатора — это непрерывно изменяющийся бертоллид с ширс ким набором энергии связи реагирующих веществ с катализатором. [c.161]

    Результаты измерений в виде локальных значений критерия Ыи,8с в зависимости от места на поверхности шара представлены на рис. IV. 22 в полярных координатах. Отложенные значения представляют собой среднее арифметическое 4—5 опытов, проведенных в одинаковых условиях. Графики указывают на большую неравномерность в значениях локальных коэффициентов массоотдачи по поверхности шара. В точках контакта эти значения минимальны, в наиболее свободно обдуваемых частях поверхности — максимальны. Суммирование полученных локальных коэффициентов по поверхности шара дает средний коэффициент массообмена, который удовлетворительно совпадает с расчетом по формуле (IV. 71) при Кеэ = 300 и 3000. Имеющиеся данные по локальным коэффициентам тепло- и массообмена можно использовать при рассмотрении процессов горения в слое топлива, экзотермической реакции на твердом катализаторе с большим тепловым эффектом. Области конта11-тов между зернами с пониженными значениями коэффициентов переноса представляют собой очаги процесса на верхнем температурном режиме и, по-видимому, повышают устойчивость процесса в плотном зернистом слое. Неравномерность локальных коэффициентов переноса должна влиять на процессы сорбции, [c.166]

    В зависимостп от способа проведения химической реакции порядок ее может меняться с высшего на низший, причем, как правило, все реакции в той или иной мере стремятся к первому порядку. Этому способствуют, например, твердые катализаторы на их поверхности изменяется механизм реакции. При адсорбции (на поверхности) реакция также стремится к первому порядку. Аналогичным образом действует и большой избыток одного из компонентов. В дальнейшем будут рассмотрены специальные случаи реакций первого порядка. [c.198]

    Рассмотрим случай катализированной реакщш, которая протекает жсключительно на поверхности твердого катализатора. Можно предположить, что реакция имеет следующие стадии  [c.535]

    Степень удаления кокса с катализатора зависит главным образом от режима работы регенератора и качеств катализатора. Чем доступнее поверхность пор твердого катализатора для молекул кислорода воздуха, тем быстрее выжигается кокс. Чем крупнее поры катализатора, тем полнее выжигается кокс из глубинных частей гранул катализатора. Вместе с тем, при укрупнении пор за счет сокращения числа пор умеренного сечения уменьшается внутренняя рабочая поверхность гранул катализатора. Накопление Б порах кокса вследствие недостаточного удаления его при регенерации приводит к неполному использованию катализатора нри крекинге сырья в peiiiTope. [c.88]

    Крекинг в псевдоожиженнсм или кипящем слое — крекинг-процесс, проходящий в слое мелких, легко подвижных а находящихся в турбулентном движении частиц твердого катализатора. Кииящяй или псевдоожиженный слой создается путем пропускания с определенной скоростью спизу вверх потока газа или паров через массу частиц сыпучего материала, например микросферического или пылевидного катализатора. [c.18]

    Полимеризация различных олефинов в присутствии твердой фосфорной кислоты нроводится путем пропускания олефинсодерн ащего сырья через реак/о ), в котором имеется слой частичек твердого катализатора, поддерживаемый при определенной температуре реакции — приблизительно от 85° до 325°, в зависимости от характера реагирующего олефипа. Легкость полимеризации иизких олефинов увеличивается с возрастанием молекулярного веса ато аиачит, что этилен требует наиболее высокой температуры для каталит 1Ч( ской полимеризации, тогда как для полимеризации пентенов требуюк я наиболее низкие температуры. [c.196]

    Латинское слово Пш(1из означает текучий. Термин флюид широко срименяе чя для наименования процесса крекинга, проводимого в псевдо-<)ЖИЖзнном слое мелких частиц твердого катализатора. [c.139]

    Реакция протекает в трех слоях твердого катализатора. Перед поступлением реагирующей смеси во второй и третий слои впрыскивают воду для снижения температуры и смещения равновесия реакции. Поступающий в реактор газ подогревается предварительно в трубчатом теплообменнике газом, отходящим после конверсии. Аппарат снабжен тепловой изоляцией. Такой реактор можно считать трехступенчатым, непрерывнодействующим, адиабатическим и контактным. [c.292]

    Трубчатые реакторы полного вытеснения. Трубчатые реакторы с поршневым потоком чащ,е всего имеют вид каналов с большим отношением длины к поперечному размеру. В реакторах такого типа теплообмен происходит через стенки. Следовательно, для поддержания приблизительно одинаковой температуры реагирующей смеси необходимо кроме высокой интенсивности теплообмена обеспечить низкие сопротивления переносу теплоты в направлении к стенке. Это условие,.помимо других, требует использования труб с небольшой площадью поперечного сечения. Наиболее простое конструктивное решение трубчатого реактора представлено на рис. VIII-32, а. Он состоит из двух концентрично расположенных труб, по внутреннему каналу движется реакционная смесь, по внешнему — теплоноситель или хладагент. Малая площадь поперечного сечения трубы ограничивает производительность аппарата. Для ее повышения большое число трубчатых реакторов соединяют параллельно в общем корпусе. Созданные таким образом многотрубчатые реакторы (рис. VIII-32,б и в), аналогичные по конструкции трубчатым теплообменникам, широко используются в промышленности. Аппараты этого типа часто применяются для проведения реакций с участием твердого катализатора, который в виде пористого сыпучего слоя заполняет либо трубы, либо меж-трубное пространство реактора. [c.317]

    Эти углеводороды могут быть использованы также и при изучении рёакций, протекающих нод давлением, превышающем атмосферное, при применении запаянных трубок. В литературе описаны различные типы аппаратуры для проведения реакции в условиях непрерывного или полунепрерывного процесса с применением твердых и жидких катализаторов. Твердые катализаторы обычно нрименяются в виде фиксированного слоя. В специальном процессе [Ю], широко применяющемся в лабораторных исследованиях и в заводской практике, хлористый алюминий находится в особой зоне, из которой он подхватывается потоком подаваемого углеводородного сырья при соответствующей температуре и непрерывно подается в реактор. [c.15]


Смотреть страницы где упоминается термин Твердые катализаторы: [c.264]    [c.282]    [c.120]    [c.23]   
Смотреть главы в:

Массопередача в гетерогенном катализе -> Твердые катализаторы

Катализ вопросы теории и методы исследования -> Твердые катализаторы

Димеризация и диспропорционирование олефинов -> Твердые катализаторы


Технология катализаторов (1989) -- [ c.8 , c.10 , c.13 ]




ПОИСК







© 2025 chem21.info Реклама на сайте