Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглотительные растворы

    В целом методы нейтрализации диоксида серы обеспечивают высокую степень очистки газа. Недостатки этих методов — значительные затраты на оборудование и обслуживание (точную регулировку подачи компонентов, поддержание оптимальной pH поглотительного раствора, выделение конечного продукта), снижение температуры газа, что ведет к ухудшению рассеивания, п образование во многих случаях твердых отходов, идущих в отвал. [c.60]


    Многие соли щелочей и слабых кислот удовлетворяют важному требованию, предъявляемому к поглотительным растворам для регенеративных процессов очистки от H2S и СО2, — легкости [c.175]

    Регенерацию поглотительного раствора осуществляют пропусканием через него воздуха. При этом около 70% сероводорода переводится в элементарную серу, а 30%—окисляется до тиосульфата натрия. [c.54]

    Для повышения абсорбционной емкости растворов и увеличения скорости химических реакций абсорбция проводится при сравнительно высоких температурах (90—120°С). Высокая температура обеспечивает высокую степень насыщения поглотительного раствора продуктами реакции. В процессе карбонатной очистки протекают следующие реакции  [c.176]

    Если в газе, подвергающемся очистке растворами Алкацид , содержится элементарная сера, то в процессе эксплуатации в щелочи образуется оксалат калия. Его накопление в поглотительном растворе приводит к повышению плотности раствора, образованию осадка в холодильнике и на корпусе абсорбера и к постепенному снижению поглотительных свойств раствора. [c.177]

    Процесс Таунсенд , основанный иа реакции Клауса, может применяться для очистки низкосернистого природного газа. При этом поглотительный раствор (ДЭГ или ТЭГ с содержанием воды 1—4%) предварительно насыщается SO2, для получения которого сжигается часть серы в котле-утилизаторе. Газы сжигания промываются поглотительным раствором, который и насыщается SO2. Насыщенный SO2 раствор поступает на абсорбцию H2S из природного газа. Вода в растворе служит катализатором для протекания реакции Клауса. [c.197]

    Хемосорбционные способы, среди которых аминовые являются важнейшими, нашли широкое применение для очистки углеводородных газов от кислых компонентов сероводорода и диоксида углерода. Каждый из них характеризуется как достоинствами, так и известными недостатками. Названия каждого из этих способов связаны с использованием поглотительного раствора соответствующего амина МЭА-способ, ДЭА-способ и др. В промышленности для выбора метода значительную роль играет коммерческая и техническая доступность амина, при этом физико-химические характеристики поглотительного раствора также имеют большое значение [И]. [c.16]

    Основное направление совершенствования щелочной очистки-совершенствование регенерации поглотительного раствора. Практическое применение находит метод, основанный на окислении меркаптанов до дисульфидов кислородом воздуха в присутствии катализаторов — переносчиков кислорода. В этом случае регенерация насыщенного поглотителя проводится при 20—30°С. Кислород воздуха окисляет меркаптиды в дисульфиды, которые отделяются от щелочи простым расслаиванием. [c.199]


    Анализируемый газ забирают в газоанализатор обычно из стеклянной пипетки, присоединенной к гребенке с левой стороны прибора и укрепленной на штативе в вертикальном положении так, чтобы трехходовой кран находился внизу. Трехходовой кран пипетки соединяют каучуковой трубкой со стеклянной грушей, воронкой или напорной склянкой, в которую наливают запирающую жидкость. В процессе работы запирающая жидкость и поглотительные растворы не должны попадать в бюретку и гребенку, так как это искажает результаты анализов. Для зарядки прибора снимают нижние части поглотительных сосудов и заливают соответствующими реактивами. [c.242]

    Технико-экономические расчеты показали, что при содержании углекислоты в газе ниже 10% выгоднее применять очистку конвертированного газа от углекислоты моноэтаноламином. Очистка моноэтаноламином в этом случае требует небольших количеств поглотительного раствора, что соответственно снижает объем ап- [c.18]

    Титрование в абсорбере сероводорода производят по мере его выделения до изменения окраски от желтой до розовой. Температуру реакционной смеси не снижают до конца испытания. По окончании выделения сероводорода прекращают подачу азота в колбу и отодвигают колбонагреватель. Колба охлаждается и при этом поглотительный раствор из абсорбера засасывается в соединительную трубку н смывает адсорбированный стенками сероводород. Когда вся трубка наполняется раствором, быстро подставляют колбонагреватель. Содержимое колбы нагревается и раствор при этом из трубки стекает в абсорбер. Операцию эту повторяют несколько раз до тех пор, пока не перестанет изменяться цвет поглотительного раствора. Отмечают суммарное количество раствора уксуснокислой ртути, пошедшее на титрование. [c.443]

    Смесь хлористых амилов, водного (не слишком концентрированного) раствора сульфгидрата натрия и этанола перемешивают в автоклавах 1 при 140—150° в течение 5 час. После завершения реакции содержимое автоклавов переводят в куб 2, где под небольшим избыточным давлением (не более 0,5 ат) отгоняют сероводород. Сероводород улавливается в абсорбере 3, состоящем из трех колонн. Первая колонна орошается циркулирующим амилсульфидом для улавливания амиленов. Вторая колонна орошается 15%-ным, а третья 3%-ным раствором едкого натра. Когда содержание щелочи в растворе, орошающем третью колонну, снизится до 1,75%, а содержание сульфида натрия возрастет до 21%, поглотительный раствор насосом перекачивается в расходный бак 4 для раствора сульфигидрата натрия. Содержимое второй колонны переводится в третью, а из бака 5 подается свежий 15%-ный раствор едкого натра для орошения второй колонны. После третьей колонны включен адсорбер, заполненный активированным углем, для улавливания последних следов органических сернистых соединений. Реакционная смесь перегоняется с водяным паром в кубе 2. Водный остаток после обработки хлором для разложения всех дурно пахнущих [c.228]

    К нему входят растворы этиленгликоля и этаноламина. С верха абсорбера уходит очищенный газ, снизу — поглотительный раствор с абсорбированными сероводородом и двуокисью углерода раствор проходит теплообменник, паровой подогреватель и входит в середину десорбера. Из десорбера сверху уходят сероводород и двуокись углерода, снизу откачивают регенерированный поглотительный раствор. Часть этого раствора подогревается в кипятильниках и возвращается в десорбер для подвода тепла, а остальное количество охлаждается в теплообменнике и холодильнике и подается на верх абсорбера. [c.162]

    Поглощение сероводорода из газа раствором ацетата кадмия последующее иодометрическое определение сульфида кадмия в поглотительном растворе [c.61]

    В качестве поглотительного раствора для экстракции сернистых [c.17]

    Концентрация моноэтаноламина в поглотительном растворе должна быть в пределах от 8 до 15% (масс.) в зависимости от содержания кислотных компонентов в газе. При концентрации растворителя ниже 8% (масс.) значительно снижается поглотительная способность, а выше 15% (масс.) усиливается коррозия оборудования и аппаратов оптимальной считается концентрация 15% (масс.). [c.282]

    Повышение температуры поглотительного раствора (абсорбента) Д/а (°С) определяют из соотношения [c.283]

    Полученные данные позволяют в зависимости от конкретной задачи определить необходимое соотношение МДЭА/ДЭА в поглотительном растворе. Так, если наряду с Н 5 требуется полное извлечение СО , то мольное соотношение МДЭА/ДЭА должно быть примерно в два раза ниже, чем мольное соотношение Н 5/С02 в очищаемом газе. [c.57]

    Поглощение сероводорода из газа подкисленным раствором хлорида калия и меркаптанов — щелочным раствором хлорида кадмия с последующим иодометрическим определением образовавшихся сульфида и меркап-тида кадмия в поглотительных растворах [c.61]

    Образовавшийся в генераторе ацетилен, имеющий температуру 50—60 °С, охлаждается в холодильнике 7, отделяется от конденсата и проходит насадочный скруббер 8, орошаемый раство-po серной кислоты. В нем ацетилен освобождается от остатков аммиака, часть которого уже растворилась в воде из генераторов и в конденсате из холодильника 7. Затем газ направляется в скруббер 9, орошаемый водным раствором гипохлорита натрия, и в заключение — в щелочной скруббер 10 для очистки от следов хлора, захваченного в гипохлоритной колонне. Для всех поглотительных растворов осуществляется циркуляция центробежными насосами часть отработанного раствора периодически выводят из системы и заменяют свежим. Очищенный ацетилен собирается в мокром газгольдере И, откуда транспортируется потребителю компрессором или газодувкой 13, проходя предохранительный гидравлический затвор или огнепреградитель 12. [c.80]


    Принципиальная технологическая схема процессов химической абсорбции не отличается от обычной схемы абсорбционного процесса. Однар(0 в конкретных условиях в зависимости от количества кислых газов в очищаемом газе, наличия примесей, при особых требованиях к степени очистки, к качеству кислого газа, и других факторов технологические схемы могут сун ест-венно отличаться. Так, например, при использовании аминных процессов при очистке газов газоконденсатных месторождений под высоким давлением и с высокой концентрацией кислых компонентов широко используется схема с разветвленными потоками абсорбента (рис. 53), позволяющая сократить капитальные вложения и в некоторой степени эксплуатационные затраты. Высокая концентрация кислых комионентов требует больших объемов циркуляции поглотительного раствора. Это не только вызывает рост энергетических затрат на перекачку и регенерацию абсорбента, но и требует больших объемов массообменных аппаратов, т. е. увеличения капитальнрлх вложений. Вместе с тем из практики известно, что в силу высоких скоростей реакций аминов с кислыми газами основная очистка газа происходит на первых по ходу очищаемого газа пяти—десяти реальных таре, 1-ках абсорбера на последующих тарелках идет тонкая доочистка. Этот факт послужил основанием для подачи основного количества грубо регенерированного абсорбента в середину абсорбера, а в верхнюю часть абсорбера — меньшей части глубоко-регенерированного абсорбента. Это позволило использовать абсорбер переменного сечения (нижняя часть большего диаметра, верхняя — меньшего), что снизило металлозатраты, а также сократить затраты энергии за счет глубокой регенерации только части абсорбента. [c.171]

    С у л ь ф и но л - п р о ц ее с. В этом процессе используется смешанный поглотитель сульфолан — физический и диизопро-паноламин — химический растворитель. Состав поглотительного раствора зависит от условий процесса и состава обрабатываемого газа и колеблется примерно в пределах от 40 до 60% суль-фолана, от 30 до 45% ДИПА и от 5 до 15% воды. [c.183]

    Остаточный газ установки Клауса с соотношением HgS S02== 2—2,4 при 130 °С подается в нижнюю часть насадочной абсорбционной колонны. Сверху колонны стекает по насадке реакци-оппая смесь. В результате противоточного контакта газа и раствора осуществляется реакция Клауса. Сера в жидком виде стекает в сборник, расположенный в низу колонны, и направляется па склад. Поглотительный раствор из нижней части абсорбционной колонны перекачивается насосом в верхнюю. Теплота реакции отводится за счет испарения парового конденсата, инжектируемого в циркулирующий раствор. Пары конденсата уносятся из колонны очищенными газами. [c.191]

    Процессы Перокс и Сульфокс . В качестве поглотителя используется водный раствор аммиака с катализл,-тором окисления (обычно гидрохинона). Сероводород абсорбируется поглотительным раствором с образованием гидросульфида аммония. При регенерации растворителя гидросульфид аммония окисляется до серы в результате контакта с во.здухом. Сер , выделяющуюся в ви с пены, всплывающей на поверхность жидкости в окислительном реакторе, отделяют фильтрацией. [c.193]

    Железо-содовый метод. Основан на использовании в качестве поглотительного раствора взвеси гидрооксида двух- и трех-вплентпого железа [c.54]

    Во время одного из таких взрывов содержание ацетилена в конденсаторе в течение всего периода непрерывной работы установки не превышало следы , однако во время анализов несколько раз наблюдалось желтое окрашивание поглотительного раствора. Проведенное позднее обследование показало, что в перерябаты- [c.15]

    На нескольких предприятиях при анализе жидкого кислорода на содержание в нем ацетилена обнаруживали желтое окрашивание поглотительного раствора (раствора Илосвая). Изучение этого вопроса показало, что раствор Илосвая может окрашиваться в желтый цвет при наличии в исследуемом газе сероуглерода, сероводорода и некоторых высших ацетиленовых углеводородов (метилацетилена и др.). Учитывая, что эти вещества при их накоплении в жидком кислороде являются взрывоопасными, а также, что изменение окраски поглотительного раствора не дает возможности правильно определять содержание ацетилена, необходимо при любом окрашивании раствора Илосвая принимать меры для выяснения состава примесей, содержащихся в жидком кислороде. [c.40]

    Натрий углекислый х. ч. нлн ч. д. а., 0,05 и 0,1 н. растворы (0,1 н. раствор применяется в качестве поглотительного раствора в случаз отсутствия микровесов, позволяющих сократить навеску до К) мг и менее, а также при анализе веществ, содержащих болое 15% сер .г). [c.302]

    Среднестатические данные испытаний в сравнении с проектным режимом (ДЭА = 25-30% мае., (х = 0,45.. 0,55 моль/моль) представлены в табл. 3.4. При использовании в..1сококонцентрированного (40% мае.) раствора ДЭА, кондиционный очищенный газ получается при следующих режимных параметрах . ./6 = 1,0 л/м а = 0,55 моль/моль, расход пара на регенерацию насыщенного аминового раствора - 3,0 кг/м к.г. Повышение концентрации ДЭА в поглотительном растворе с 25 до 40% мае. позволяет сократить объем циркуляции раствора с 300 до 200 [c.59]

    Как видно из табл. 4 (стр. 34), такие комплексы с бутадиеиом более стойки, чем комплексы с олефинами, и при обработке фрак-цти поглотительным раствором прн минус 10—0°С извлекается в основном бутадиен-1,3. При нагревании до 40 °С происходит десорбция связавшихся олефинов с некоторой частью бутадиена прп 70—75°С выделяют чистый бутадиен, а поглотительный растпор после охлаждения возвращают на сорбцию. Процесс проводят в протнвоточном каскаде аппаратов с мешалками каждый аппарат снабжен сепаратором и насосом. Свежий поглотительный раствор падают в первый аппарат, а бутиленовую фракцию — в последний, чем создают наиболее благоприятные условия для сорбции разбавленной фракции свежим поглотительным раство ром, а концентрированную фракцию абсорбируют уже насыщенным раствором. [c.52]

    На совремегщых установках хемосорбцию проводят в нескольких экстра1щионных колоннах, в которых жидкая фракция п поглотительный раствор движутся противотоком за счет разницы их плотностей (рис. 13). Охлажденный сорбент поступает в верхнюю часть первого экстрактора / и движется сверху вниз через все три аппарата. Исходную фракцию С4 подают в середину третьего экстрактора, и она, как более легкая, поднимается вверх из одной юлониы в другую ее перекачивают насосами. Освобожденная от [c.52]

    Количество хлористого водорода, выделившегося в процессе перегонки обессоленной нефти, определяют как сумму содержаний СГ в пересчете на Na I в кубовом остатке, отгоне и поглотительном растворе. Содержание СГ в миллиграммах хлорида на 1 л нефти вычисляют на основании результатов титрования по формуле [c.148]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    Общие преимуи ества абсорбционной очистки заключаются прежде всего в ненрерывностн процесса и в возможности сравнительно экономичного извлечения большого количества примесей из газа, а также в возможности непрерывной регенерации поглотительного раствора прн циклическом режиме. Недостаток метода — громоздкость оборудования (напрнмер, башни), сложность и многоступенчатость технологических схем достижение высокой степени очистки и полная регенерация поглотителя связаны с большими объемами аппаратуры н большим числом ступеней очистки. [c.235]

    Французская фирма NSPA существенно усовершенствовала ДЭА-способ, что позволило увеличить массовую долю ДЭА в поглотительном растворе до 40 % и степень насыщения амина кислыми газами до 1,1 моль/моль. Поэтому усовершенствованный NSPA ДЭА-способ широко применяется в настоящее время при очистке высокосернистых газов, [c.20]


Смотреть страницы где упоминается термин Поглотительные растворы: [c.193]    [c.37]    [c.38]    [c.59]    [c.25]    [c.306]    [c.307]    [c.30]    [c.403]    [c.403]    [c.404]    [c.234]    [c.238]    [c.21]   
Смотреть главы в:

Справочник химика. т.4 -> Поглотительные растворы

Справочник химика Том 4 Издание 2 1965 -> Поглотительные растворы

Справочник химика Изд.2 Том 4 -> Поглотительные растворы


Справочник азотчика Том 1 (1967) -- [ c.0 ]

Справочник азотчика Т 1 (1967) -- [ c.0 ]

Методы концентрирования микроэлементов в неорганическом анализе (1986) -- [ c.116 ]




ПОИСК







© 2025 chem21.info Реклама на сайте