Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны выбор

    Напротив, когда рассматривается плотная непористая мембрана, выбор полимерного материала определяющим образом влияет на свойства мембраны и особенно важными параметрами являются температура стеклования Тст и кристалличность. Эти параметры опреде- [c.50]

    Синтетические мембраны могут быть разделены далее на органические и неорганические, причем важнейший класс мембранных материалов — это органические, а именно полимерные мембраны. Выбор полимера как мембранного материала не произволен, но базируется на весьма специфических свойствах, основанных на структурных факторах. Следовательно, чтобы понять свойства мембранных материалов, требуется знать некоторые основы полимерной химии. В этой главе будут описаны структурные факторы, которые определяют термические, химические и механические свойства полимеров, а также и проницаемость, которая является характерным свойством материала. Сначала будет дано описание принципов построения полимеров. Затем будут описаны такие структурные факторы, как молекулярная масса, гибкость цепи и межцепное взаимодействие, а также будут обсуждаться соотношения между свойствами этих материалов и мембранными свойствами. Наконец, поскольку такие неорганические материалы, как стекла и керамика, часто используются для получения мембран, будут описаны также свойства этих материалов. [c.39]


    Хотя существуют другие параметры, влияющие на тип структуры мембраны, выбор системы растворитель/нерастворитель является наиболее важным. Фиксирование этих параметров все же оставляет ряд степеней свободы в системе (концентрация полимера, добавка растворителя в ванну с нерастворителем, добавка нерастворителя к раствору полимера, температура коагуляционной ванны и раствора полимера и различные другие низко- и высокомолекулярные добавки к поливочному раствору и в коагуляционную ванну). Некоторые из этих параметров будут обсуждаться в последующих разделах. [c.145]

    Необходимо отметить, что выбор конструкции аппарата для осуществления конкретного процесса разделения определяется, в первую очередь, типом и характеристиками избранной для этих целей промышленно выпускаемой мембраны и, что не менее важно, технологическими параметрами процесса — давлением (и абсолютным перепадом давлений), температурой, составом газовой смеси, коррозионной активностью ее компонентов, нагрузкой по исходному газу и др. [c.195]

    Таким образом, при известных характеристиках мембраны и заданном давлении и Рр можно подбором состава исходной смеси добиться оптимальных энергетических характеристик мембранного процесса в модуле. Такая возможность направленного изменения состава Xf- Xf ) появляется в схемах мембранных ступеней разделения с рециклом проникшего или сбросного потоков, при этом условие т]мд(л )->тах следует учесть при выборе коэффициента рециркуляции. [c.263]

    Мембраны. Для разделения изотопов используются как полимерные мембраны, так и мембраны из неорганических материалов— металлов и их оксидов, керамики, стекла. Мембраны могут быть как пористыми, так и сплошными, иметь гомогенную или анизотропную структуру и т. д. Выбор типа мембраны (из перечисленных выше) для разделения газов с близкими молекулярными массами и U), обладающих схожими физико-химическими свойствами,— задача весьма трудная. Усложняет- [c.314]

    При выборе мембран для работы в условиях радиоактивного облучения следует учитывать влияние радиации на их свойства — проницаемость, механическую прочность и время жизни . Так, мембраны из силиконового каучука стабильно работают в этих условиях только до величины дозы порядка 10 рад [99]. [c.316]


    Анализ влияния газоразделительных свойств мембран на параметры процесса разделения представлен на рис. 8.36, 8.37 ЦП]. Из рисунков видно, что с увеличением коэффициента деления потока 0 растет степень извлечения гелия из газов, но одновременно падает его концентрация в пермеате. Для достижения 85%-й степени извлечения гелия (ф = 0,85 является параметром криогенного процесса получения гелия) и высокой степени обогащения необходимо применять мембраны с фактором разделения а ЗО. Однако результаты расчетов [112, ПЗ] показали, что увеличение фактора разделения мембран выще 50—100 не приводит к значительному росту концентрации гелия в пермеате табл. 8.23. Как видно из таблицы, при выборе мембран для извлечения гелия, кроме селективности, важным параметром является и проницаемость. Так, при увеличении фактора разделения в 100 раз степень обогащения возрастает только в 5 раз, в то время как поверхность мембран увеличивается в 8000 раз (при одинаковой степени извлечения гелия). [c.325]

    Трехкамерные осмометры. Принципиальная схема трехкамерных осмометров представлена на рис. 1-17. Особенностью таких осмометров является трудность уничтожения концентрационной поляризации. Чтобы ввести мешалку, требуется значительно усложнить конструкцию прибора. Трехкамерные осмометры имеют камеру 7 для измерения давления, наполненную инертной жидкостью. В этом случае большую трудность составляет выбор материала гибкой мембраны 6, которая является [c.43]

    Однако при выборе материала полимерной мембраны нужно помнить о том, что сопротивляемость материала растворению во многом зависит от концентрации растворителя. Так, хотя нитроцеллюлоза и полиамид не подходят для ледяной уксусной кислоты, их можно успешно использовать для обработки раствора уксусной кислоты низкой концентрации. [c.70]

    Различные взаимодействия между растворителем и растворенным веществом, растворителем и мембраной, растворенным веществом и мембраной еще больше усложняют выбор полимера. Если взаимодействие между растворенным веществом и мембраной сильное, а взаимодействие между растворителем и растворенным веществом слабое, может произойти избирательная адсорбция растворенного вещества мембраной, ведущая к ее закупориванию или набуханию. В любом случае проницаемость мембраны и ее селективность по мере адсорбции могут быстро ухудшаться. [c.70]

    Хотя основными факторами, влияющими на выбор химической структуры материала для изготовления полимерной мембраны, являются степень кристалличности и набухаемость, значительное влияние могут оказывать и такие вторичные факторы, как стойкость к гидролизу, микробному разложению и сорбции растворенного вещества. Они особенно важны, когда стоимость замены мембраны не является пренебрежимо малой. [c.70]

    В качестве подложек могут быть использованы бумага, пористые полимерные пленки (например, полиэтиленовая) с порами размером примерно 0,45 мкм и др. Лучшей оказалась подложка из фильтров Миллипор . При выборе подложки следует учитывать способность к сцеплению подложки и пленки из ОГ. При отсутствии такой способности происходит проникание ОГ частиц в поры подложки, что ведет к ухудшению характеристик полученной мембраны. [c.82]

    При проведении электродиализа до недавнего времени применяли различные пористые мембраны. Отрицательно заряженных мембран известно много, например керамические, пергаментные, целлофановые, коллодиевые и др. Выбор положительно заряженных мембран был весьма- ограничен. [c.227]

    Выбор той или иной добавки обусловлен природой растворенных веществ, их концентрацией, необходимой селективностью и рядом других факторов. Следует иметь в виду, что мембраны, образованные добавками, несущими заряд, могут подвергаться неблагоприятному воздействию поливалентных противоионов. Кроме того, с повышением концентрации растворенных веществ их селективность быстро уменьшается. Нейтральные мембраны не имеют таких недостатков, однако характеристики разделения обычно хуже, чем у заряженных мембран. [c.88]

    Методы оценки размеров пор основаны обычно на модели предположительно цилиндрических пор с круглым или эллиптическим сечением. Однако модель цилиндрических пор может быть принята только для изотропных мембран. Для анизотропных мембран, например широко применяемых в практике мембран из ацетатов целлюлозы, принятие такой модели недопустимо. Это обстоятельство необходимо учитывать при выборе метода определения пор мембраны. В дальнейшем под размером пор обычно будем подразумевать радиус или диаметр поры с круглым сечением, если другая форма пор не оговаривается специально. [c.93]

    Выбор показателей, ответственных за работоспособность изделий, — обычно наиболее трудная часть задачи. Для ненапряженных резин такими показателями могут служить относительное удлинение, прочность, модуль упругости, для напряженных — напряжение или контактное давление и остаточная деформация. Примерами показателей, определяющих работоспособность некоторых изделий, являются твердость (клапаны), контактное напряжение (различные уплотнители), проницаемость (газосодержащие оболочки, мембраны). Расчет гарантийного срока хранения по выбранным показателям предполагает экспериментальное определение  [c.131]


    В последние годы получены мембраны, которые пригодны для работы при значительно больших температурах (см. стр. 48). Для выбора оптимальных условий их эксплуатации становится необходимым учет влияния температуры на характеристики разделения. Анализ данных по влиянию температуры на проницаемость и селективность ацетатцеллюлозных мембран (рис. 1У-10) показывает, что вначале с повышением температуры проницаемость увеличивается обратно пропорционально вязкости жидкости. Затем кривая G=f t) начинает отклоняться от этой закономерности, проницаемость уменьшается и при 85 С падает до нуля. Этот эффект мои<но объяснить только усадкой и полным стягиванием пор мембраны в процессе структурирования полимера, который заканчивается при указанной температуре, что подтверждается, в частности, необратимым изменением свойств этих мембран после работы при температуре выше 50 °С. Селективность ацетатцеллюлозных мембран при повышении температуры сначала возрастает, затем остается примерно постоянной. [c.183]

    К выбору мембраны для очистки растворов ПАВ  [c.323]

    Предварительный анализ свойств компонентов и смеси уже позволяет выделить группы альтернативных способов получения чистых компонентов, однако в большей степени полезен при выполнении анализа фазового и химического равновесия, так как сужает область экспериментальных и расчетных исследований. Например, если смесь относится к гомогенным без азеотропов с большой разностью температур кипения, но содержит компонент (или компоненты) с повышенной коррозионной способностью, то ее разделение может быть обеспечено обычной ректификацией (возможно, с применением аппаратов однократного испарения). Расчет этих процессов не представляет труда, однако, очевидно, особое внимание должно быть уделено подбору материала оборудования. С другой стороны, при наличии азеотропов число возможных способов разделения возрастает (азеотропно-экстрактивная ректификация, вакуумная ректификация или под давлением, мембраны, кристаллизация и т. д.). Ясно, что выбор оптимального способа разделения должен производиться на основе более полного расчетного и, возможно, экспериментального исследования. [c.97]

    Точность измерения осмотического давления тсо зависит от правильности выбора мембраны. Осложняющими факторами являются  [c.30]

    Однако экспериментальное определение краевого угла для капиллярных систем весьма сложно, и формулой Кантора пользуются лишь в том случае, когда краевой угол равен нулю. Поэтому чрезвычайно важным является вопрос о выборе жидкости, наполняющей поры мембраны. При наполнении капилляров хорошо смачивающей их поверхность жидкостью последняя покрывает слоем стенки капилляра, и краевой угол 0 равен нулю. [c.67]

    Для проведения электродиализа применяют различной конструкции аппараты, называемые электродиализаторами. Основой таких аппаратов является трехкамерная ячейка, среднее пространство которой отделено от крайних электродных камер мембранами. Подлежащий очистке коллоидный раствор помещают в среднюю камеру, в то время как крайние камеры наполняют водой. Мембрана, расположенная у отрицательного электрода называется — катодной, а у положительного — анодной. Следует обращать большое внимание на выбор материала для анода, чтобы избежать анодного растворения и переноса ионов металла через анодную мембрану в среднюю камеру. В связи с этим в качестве анода обычно употребляют платину или графит. В качестве катода могут служить различные металлы — железо, никель, медь. [c.223]

    Существование предела при 4 ->- < для решения соответствующей нестационарной задачи обычно усматривается из физических соображений, учитывающих наличие или отсутствие диссипативных явлений. При неудачном выборе нестационарного аналога предел при < -> < может не существовать. Так, например, если рассматривать уравнение (2.6.1) как уравнение равновесия мембраны, то не следует заменять его уравнением = Ам — [c.52]

    Мембраны, применяемые для процесса первапорации, представляют собой асимметричные или композиционные мембраны. Как и в случае мембран для газоразделения, пористая под)южка должна иметь открытую пористую структуру для уменьшения сопротивления переносу пара и предотвращения капиллярной конденсации. Существенное требование, предъявляемое к пер-вапорационным мембранам, — это устойчивость материалов мембраны к компонентам разделяемой смеси при повышенных температурах. Сравнительно высокие температуры жидкой смеси необходимы для поддержания достаточно большой движущей силы процесса испарения через мембрану, которой является разность парциальных давлений паров компонентов разделяемой смеси по разные стороны от мембраны. Выбор полимерного материала в значительной мере зависит от того, для решения какой задачи предназначена мембрана. В отличие от газоразделения, при испарении через мембрану эластомеры в результате сильного набухания могут обладать не большими проницаемостями, чем стеклообразные полимеры. К полимеру предъявляются два противоречивых требования. С одной стороны, мембрана не должна набухать слишком сильно во избежание существенного уменьшения селективности. С другой стороны, при низкой растворимости выделяемого компонента в полимере и недостаточном набухании слишком низким оказывается поток вещества через мембрану. Полимеры, имеющие аморфную структуру (стеклообразные полимеры или каучуки), могут оказаться [c.432]

    Хигучи и др. [351] установили, что пластифицированные мембранные электроды обладают высокой специфичностью по отношению к относительно гидрофобным органическим катионам и анионам. Авторы [351] полагают, что некоторые органические пластифицированные матрицы с ограниченно гидрофильным характером можно использовать в качестве гелеобразующего компонента мембраны. Выбор конкретной матрицы зависит прежде всего от ее совместимости с желаемыми жидкими пластифицирующими компонентами. Эти жидкие компоненты подбираются по их способности сольватировать интересующие аналитика ионы. Для того чтобы электрод обладал высокой специфичностью, необходимы жидкие растворители с особенно высокой степенью специфичности в отношении образования соответствующих сольватов. Время отклика электрода достаточно мало в растворах с концентрацией более 10 М равновесие достигается менее чем за 1 мин. Электрод с поливинилхлоридной (ПВХ) мембраной, пластифицированной М,К-диметилолеоамидом (халькомид 18-ОЬ), имеет нернстову электродную функцию относительно ионов тетрабутиламмония. Электрод с такой же мембраной, как показано на рис, 9.1, характеризуется линейной электродной функцией для анионов тетрафенилбората только в области высоких концентраций. [c.115]

    Мембраны. Выбор и изготовление подходящей мембраны составляют в настоящее время основную проблему осмометрии. Для быстрого установления равновесия желательна высокая пористость. Однако это требова И1е ограничивает область применеиия мембраны высокими значениями молекулярных весов, так как с увеличением размеров пор растет онасиость проиикиовеиия малых молекул полидисперсной смеси через большие поры мембраны. Поэтому при тщательных измерениях никогда не следует забывать проводить проверку иа отсутствие малых количеств растворенного вещества в чистой жидкости. Фракции со средними молекулярными весами ниже 10 000 едва ли следует изучать осмометрически вследствие возможности больнтх потерь вещестиа, проходящего через мембрану. [c.354]

    Если выбор движущих сил 1 и Дг независим, то при определенных условиях выражение в скобках и величина Р могут приближаться к нулю при конечных значениях потоков. Поскольку диссипативная функция характеризует рассеяние свободной энергии, это означает приближение процессов в условиях полного сопряжения к термодинамической обратимости. Подробнее проблема энергетической эффективности процессов мембраны в условиях их сопряжения рассмотрена в гл. 7. Здесь же оценим влияние степени сопряжения на скорость массопереноса в мембране. На рис. 1.2 показан общий вид зависимости, где величина Z использована для приведения отношений потоков /]//2 и сил Х-21Х1 к безразмерной форме. [c.19]

    Рис. 4.27 дает представление о характере изменения коэффициента извлечения /Си с ростом давления в напорном канале, при этом имеется возможность сравнить процессы при одностороннем и двустороннем проницании, при вынужденном и смешанноконвективном движении газа с моделью идеального вытеснения (кривая 1). Видно, что внешнедиффузионное сопротивление резко снижает массообменную эффективность мембранного разделения, причем наблюдается максимум зависимости К = Р ). Положение максимума смещается в сторону больших давлений при интенсификации процесса массообмена в результате свободной конвекции, а также при двустороннем расположении мембраны в канале. С ростом коэффициента деления 0 смещение максимума зависимости Ka f Pf) имеет более сложный характер при увеличении 0 от О до 0,5 оптимум смещается в сторону более низких давлений — это область нарастания внешнедиффузионных сопротивлений (см. рис. 4.26). Далее, с ростом 0, оптимальное значение давления Р смещается в сторону больших значений — здесь влияние массообмена в газовой фазе падает вследствие истощения смеси. В гл. 7 дан анализ влияния массообменных процессов в каналах на энергетику мембранного разделения газов, который, позволит дать рекомендации по выбору оптимального давления в аппаратах. [c.156]

    При выборе материалов мембраны следует иметь в ниду, что наибольший эффект разделения может быть получен в случае, если мембрана лиофильна по отношению к внешней фазе и лиофобна — к дисперсной. Ниже приведен пример разделения эмульсии ультрафильтра-цией (по данным фирмы Абкор Дюрр ). [c.282]

    Для очистки сточных вод с низким содержанием ПАВ могут быть рекомендованы только обратноосмотические мембраны, поскольку они обладают высокой селективностью к мономеру. Для практического выбора мембраны при разделении того или иного ПАВ можно использовать график, представленный на рис. У1-23, на котором изображены зависимости селективности обратноосмотических мембран по растворен-ны(м поверхностно-активным веществам фпдв от селективности мембран по хлористому натрию при концентрации ПАВ 1000 мг/л, т. е. при концентрации, близкой к ККМ. [c.322]

    При выборе мембраны следует исходить из того, что она должна обладать максимальной удельной производительностью (проницаемостью) при селективности, обеспечивающей требования к качеству фильтрата (соответствие санитаркьш нормам, допустимым потерям растворенного всщества и т. п.). [c.195]

    В практике пробоотбора при оценке зафязнений атмосферы в последние годы все шире применяют пассивный пробоотбор [43]. В отличие от обычно используемых методов, заключающихся в аспирации заданного объема воздуха, пассивный пробоотбор основан на принципе молекулярной диффузии определяемого вещества через полимерную мембрану и его адсорбции в слое сорбента. Соответствующие устройства отличаются простотой конструкции и обслуживания, компактностью, а также невысокой стоимостью Такие системы особенно удобны для кон-фоля токсичных веществ в течение длительного времени и в широком диапазоне концентраций. Основное достоинство метода - высокая избирательность благодаря выбору мембраны, которая пропускает в фубку с сорбентом лишь молекулы определенного размера. Пассивный хфобоот-бор делает реальной индивидуальную дозиметрию токсикантов, воздействующих на человека за определенный промежуток времени. При этом используют миниатюрные ловушки типа дозимефов. [c.180]

    Для определения молекулярного веса осмотическим путем выбор мембраны имеет большое Значение. Трудно получить мембрану, способную проп,ускать молекулы растворителя и задерживать молекулы исследуемого вещества с молекулярным весом ниже 20 ООО, [c.287]

    Флотационное концентрирование биосуспензий, несмотря на известные положительные стороны (простота оборудования, низкие энергозатраты), ограниченно используется в связи с невысокой степенью извлечения микробных клеток в отдельном флотационном аппарате. Дополнительных технологических приемов при использовании в биохимическом производстве требует также способ фильтрационного разделения для мембранных фильтров. Это связано с подбором размеров пор и структуры мембраны, для барабанных фильтров с выбором фильтрующего материала, применением реагентов — фильтровальных добавок и т. д. [c.237]

    Выбор материала мембраны, определение ее толщины на параметры, указанные в технической характеристике, а также изготовление мембраны производит ВНИИТБХП. Мембрана приобретается заказчиком. [c.792]

    При очистке мембранных белков детергенты бывают необходимы и для экстракции белка из липидного окружения мембраны, и для поддержания его ферментатинной активности в растворе (в какой-то мере имитируя это липидное окружение), и, наконец, в процессе самой гидрофобной хроматографии. Экспериментатору приходится гибко манипулировать последовательным выбором природы и концентрации различных детергентов для решения всех этих задач. [c.185]

    Инжектор с резиновой мембраной по конструкции похож на предыдущий, в нем не используют кран остановки потока растворителя и на месте заглушки зажимается упругая резиновая мембрана. Ввод пробы осуществляют микрошприцем, рассчитанным на работу в герметичных условиях при высоких давлениях. Пробу вводят в поток растворителя без его остановки путем прокалывания мембраны, введения микрошприца до упора иглы в фильтр колонки и нанесения пробы. Инжектор прост по конструкции и легко может быть изготовлен. Основной недостаток — наличие резиновой мембраны, которая набухает в растворителях, теряет герметичность при многих проколах, выделяет в поток растворителя ингредиенты, дающие ложные пики и повышающие фон и шумы детектора. Частицы мембраны, выкрашивающиеся при проколах, загрязняют входной фильтр колонки, создают эффект памяти . Выбор для мемораны марки резины, наиболее устойчивой к данному растворителю, использование мембран многослойных с наружными слоями из фтор-полимеров или из металлической фольги позволяет уменьшить, но не исключить эти недостатки. Микрошприцы высокого давления также дороги, более трудно промываются и менее надежны, чем обычные. Этот тип инжектора также используют в основном для учебных целей. [c.147]


Смотреть страницы где упоминается термин Мембраны выбор: [c.227]    [c.196]    [c.5]    [c.195]    [c.201]    [c.373]    [c.203]    [c.282]    [c.65]    [c.464]    [c.40]    [c.59]   
Баромембранные процессы (1986) -- [ c.105 ]

Основные процессы и аппараты химической технологии (1983) -- [ c.195 , c.196 , c.201 , c.202 ]




ПОИСК







© 2025 chem21.info Реклама на сайте