Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленное применение

    Причиной изменения концентраций начальной фазы раствора в ходе ее выкипания или конденсации является выделение из нее новой фазы, имеющей состав, отличный от ее состава. Это обстоятельство и наряду с ним резкое различие в плотностях паровой и жидкой фаз, обеспечивающее возможность их легкого самопроизвольного отделения друг от друга, создают основу промышленного применения процессов перегонки. [c.63]


    Реакция с хлоридами фосфора не нашла промышленного применения. Было проведено [108] систематическое исследование, посвященное получению хлористых алкилов иэ соответствующих спиртов. Проверены четыре метода взаимодействие с хлористым водородом в присутствии хлористого цинка, с треххлористым фосфором, с пятихлористым фосфором и с хлористым тионилом. [c.192]

    Несколько процессов частичного окисления, сырьем для которых служат низшие предельные углеводороды, получили промышленное применение. Некоторые из них заслуживают особого внимания. [c.344]

    Критериями выбора растворителей для промышленного применения являются их стоимость, характеристика растворимости, физические свойства, а также термическая и химическая стабильность. Пригодность растворителей для рентабельного промышленного применения определяется избирательностью и температурным интервалом экстракции, которыми характеризуются эти растворители. Температуры кипения этих растворителей допускают проведение экстракции при оптимальной температуре в условиях атмосферного давления (исключение представляет пропан), а регенерация растворителя может производиться путем перегонки, включая п перегонку с водяным паром. [c.193]

    Процессы экстракционной и адсорбционной депарафинизации были разработаны и подготовлены к промышленному применению лишь в самое последнее время и распространения еще не получили. [c.93]

    В виде амальгамы, содержащей 12,5 -/о кадмия, этот электрод используется при изготовлении нормальных элементов Вестона, э.д.с. которых практически пс изменяется со временем. Наиболее широкое промышленное применение нашли амальгамы щелочных металлов, получаемые как промежуточные продукты при производстве хлора и щелочей. [c.169]

    Газ содержит около 50% Нг, который также может найти промышленное применение. [c.96]

    Разработанный еще перед первой мировой войной (Баденской фабрикой) процесс получения изопрена из пентанов природного газа или сырой нефти, основанный на рассмотренном выше методе, не нашел промышленного применения, но в весьма значительной степени опособ-ствовал развитию техники хлорирования и дегидрохлорироваиия [194]. [c.217]

    Поэтому обязательным условием для промышленного применения таких продуктов хлорирования является их предварительная стабилизация, т. е. введение добавок, предотвращающих отщепление хлористого [c.250]


    Из многих возможных катализаторов реакции прямой гидратации олефинов для промышленного применения рекомендуются только два  [c.61]

    Ввиду того что для обеспечения устойчивой капельной конденсации на поверхность теплообмена нужно непрерывно подавать смазывающее вещество, которое к тому же загрязняет эту поверхность, промышленного применения этот способ организации капельной конденсации не нашел. На практике встречаются в лучшем случае явления смешанной конденсации этим и объясняется та производительность конденсаторов, которая намного превышает значения, получаемые согласно теории конденсатной пленки. Интересно, что в опытах, проведенных до настоящего времени, наиболее трудным оказалось получение капельной конденсации на алюминиевых и стальных трубках, в отличие от трубок из хромоникелевой стали, на поверхности которых капельная конденсация может быть достигнута легче. [c.94]

    Для отделения твердой фазы от жидкой предложено много различных способов, начиная от различных форм фильтрации, отстоя и центрифугирования, кончая флотацией, электроосаждением и др. Наибольшее промышленное применение получили и широко используются в настоящая время вакуумная фильтрация, фильтрпрессование и центрифугирование. Методы отстоя и коагуляционного осаждения в [c.117]

    Процесс электроосаждения парафина остается в настоящее время еще весьма мало изученным. Сведений о промышленном применении данного процесса еще не имеется. Известны только некоторые зарубежные патенты [25], относящиеся к применению электроосаждения при депарафинизации. [c.135]

    Но тем пе менее на основании некоторых наших опытов можно полагать, что процесс электроосаждения парафина вследствие простоты аппаратурного оформления при надлежащей его конструктивной разработке сможет найти промышленное применение при депарафинизации и в первую очередь, возможно, для освобождения от взвеси парафина суспензий с невысокой концентрацией твердой фазы. [c.135]

    Промышленное применение данного процесса известно для переработки дистиллятного сырья средней и низкой вязкости. [c.206]

    Данный метод не имел промышленного применения из-за трудностей нахождения конструкционных материалов, устойчивых в условиях проведения реакции (а). [c.59]

    ПРОМЫШЛЕННЫЕ ПРИМЕНЕНИЯ АЗЕОТРОПНОЙ ПЕРЕГОНКИ [c.128]

    Промышленное применение. Как было показано, ацетилен образуется при пиролизе углеводородов от метана до бутана . Следует под- [c.89]

    Синтез этилена посредством окисления этана,воздухом или кислородом при низком давлении был распространен в значительных масштабах в Германии и нашел также промышленное применение в Соединенных Штатах Америки. [c.327]

    Хлористый алюминий получил некоторое промышленное применение при производстве бензина из газойля в период первой мировой войны и позже [57]. Бензин, получавшийся таким образом, был бесцветным, не содержал олефинов, в значительной степени был свободен от сернистых соединений и имел сравнительно высокие антидетонационные качества, последнее, по-видимому, является следствием изомеризации м-парафинов в разветвленные парафины. [c.97]

    Промышленное применение оксосинтеза будет зависеть от доступности и стоимости олефинового сырья. С этой точки зрения представляет интерес изучение поведения терпенов и других встречающихся в природе ненасыщенных углеводородов. Изучение камфена в этом направлении проведено исключительно детально [10] изучались и многие другие соединения олефинового характера [18J. Исследовались полимеры пропилена спирты Qo и j3 можно получить из тримеров и тетрамеров соответственно. [c.296]

    На этой установке из сырого газового бензина, поглощенного абсорбционным маслом, можно получить -парафиновые углеводороды с достаточной для промышленного применения чистотой пропан — 98%, изобутан — 95%, н-бутаи — 95%, изопентз н—95%, а та.кже фракцию пентана и более тяжелых углеводородов. [c.24]

    Очистка горючих газов от сероводорода и диоксила углерода. Для очистки горючих газов от кислых компонентов или одного из НИ1С промышленное применение в настоящее время нашли следующие основные процессы  [c.157]

    Криогенные методы основаны иа способности компонентов природного газа легко конденсироваться при низких температурах. Обычно большая часть пропана н практически все более тяжелые углеводороды котщенсируются уже при охлаждении газа до —50 °С. Но для получения гелия высокой чистоты (99,995%) требуется температура конденсации азота (—195,8 °С). Часто на криогенных установках получают гелий-сырец, гелиевый концентрат с содержанием гелия 50—85%. Для получения чистого гелия из сырца используются химические адсорбционные и каталитические методы. Криогенные методы нашли промышленное применение, поскольку легко вписываются в систему комплексной переработки газа. [c.206]


    Каталитический риформинг позволяет превращать низкооктановые бензины в высокооктайовые. Наряду с этим при переработке соответствующих узких фракций бензинов каталитическим риформингом можно получать ароматические углеводороды (бензол, толуол, ксилолы и этилбензол), являющиеся важным сырьем для нефтехимической промышленности. Для каталитического риформинга промышленное применение получили два типа катализаторов оксидомолибденовый (гидроформинг) и платиновый (платформинг). Процесс осуществляется в среде циркулирующего газа, содержащего 75—90% (об.) водорода. [c.85]

    Активность бутилфенольных ингибиторов при стабилизации топлив и масел различна. Так, 2,6-ди-грег-бутил-4-метилфенол (ионол) наиболее активен в маслах и менее активен в бензинах. Наоборот, в бензинах более активен 6-грег-бутил-2,4-ме-тилфенол (Топанол А), мало активный в маслах. Эти продукты уже давно получили промышленное применение как у нас, так [c.84]

    Для того чтобы судить о возможности промышленного применения различных реакторов, эксперимейтально определяют среднее и действительное время пребывания и дают оценку этим данным с помощью теории вероятностей. С этой целью используется понятие относительного времени пребывания т  [c.210]

    Растворители, применяемые во всех этих экстракционных процессах, представляют собой неуглеводородные продукты. Промышленное применение получили фурфурол, фенол, /3, / -дихлорэтилсвый эфир (хлорекс), нитробензол, сернистый ангидрид и диэтиленгликоль. Иногда для повыше-1ШЯ содержания ароматических соединений в экстракте эти растворители могут использоваться в сочетании с легкими нефтяными фракциями. В некоторых случаях для увеличения избирательности растворителя или для регулирования его растворяющей способности в нем растворяются небольшие количества воды. [c.192]

    Из отмеченных выше групп процессов депарафинизации наиболее известными и получившими наиболеее широкое промышленное применение являются различные и многочисленные разновидности процессов депарафинизации кристаллизацией. Используя принцип кристаллизации при охлаждении, положенный в основу этих процессов, и сочетая его с применением избирательных растворителей, можно депарафинировать самые разнообразные нефтяные продукты, начиная от дистиллятов дизельных топлив и кончая тяжелыми остаточными рафинатами. [c.93]

    К веществам, способным образовывать с парафинами нерастворимые комплексы (или, как их иногда называют, аддукты ), относятся карбалгид [26], а также тиокарбамид, селен-карбамид, теллур-карбамид [27]. При этом промышленное применение в процессах депарафинпзацпп получил в настоящее время только кар-балшд. [c.137]

    Экстракционной депарафинизацией именуются процессы, в которых разделение застывающих и низкозастывающих компонентов основывается на различной их растворимости в тех или иных растворителях и выполняется путем экстрагирования этими растворителями. В принципе растворители в зависимости от природы могут растворять как низкозастывающие компоненты, оставляя застывающий продукт в остатке от экстракции, так и парафин, оставляя неэкстрагированпыми низкозастывающие компоненты. В техническом отношении были бы значительно более удобны те растворители, которые растворяют предпочтительно застывающие компоненты. Однако такие растворители, приемлемые для промышленного применения, еще не найдены. Что же касается перфторуглеводородов, способных растворять преимущественно парафин [54, 55], то данных относительно возможности их промышленного использования для рассматриваемой цели не имеется. Вследствие этого предложенные в настоящее время 1 цессы экстракционной депарафинизации основываются па экстрагировании из обрабатываемого сырья низкозастываюпщх компонентов. [c.153]

    Прежние исследовательские работы Фишера и его сотрудников, а также немецких промышленных исследовательских лабораторий [27 к], ограничивались разработкой процессов с применением кобальтовых катализаторов в реакторах со стационарным слоем катализатора. В связи с относительно узким интервалом рабочих температур при синтезе на кобальтовых катализаторах, не говоря уже о высокой стоимости и дефицитности кобальта, начиная с 1943 г., основное внимание было обращено на изучение возможности промышленного применения железных катализаторов. Исследовательские работы по использованию кобальтовых катализаторов фактически прекратились, если не считать небольшого количества патентов, касающихся применения флюид-техники к процессу синтеза иад кобальтовыми катализаторами [10, 18, 23]. Однако основные технологические проблемы, возникающие при осуществлении процесса синтеза на кобальтовых катализаторах, сохранились и при применении железных катализаторов. Высокая экзотермичность реакции и необходимость быстрого отвода выделяющегося тепла во избежание нежела- [c.526]

    На основе обширных исследований было установлено, что наилучшим является катализатор состава 72% 2нО — 9% СаСтО — 18% АКОд [25]. Сообщалось, что этот катализатор обладает 70%-иой избирательностью при 20%-ной конверсии. Как будет указано ниже, почти аналогичный катализатор нашел в Германии промышленное применение для дегидрирования бензола до стирола, однако о применении его для промышленного нолучения бутадиена указаний нет. [c.202]

    Были исследованы каталитические свойства доломитов, содержавших наряду с окисью железа, СаО и MgO. Катализаторы обнаружили 70%-ную избирательность к стиролу. Был исследован ряд катализаторов, содержавших пятиокись ванадия, нанесенную на MgO, AljOj, SiOj и т. д. [77, 78] катализаторы состава Al. Og — СгаОд [19, 20, 46, 56] и многие другие вещества. 90%-ную избирательность обнаружил никелевый катализатор Дау не нашедший, однако, промышленного применения [55]. [c.209]

    Примером важного промышленного применения реакции (2) является автоокисление кумола, так как при этом получается гидроперекись, дающая после обработки кислотой фенол и аце1 он. [c.279]

    Как описано в ])яде патентов Рида [76], весьма сходные результаты получены при пропускании хлора и двуокиси серы через углеводород. Этот метод обычно известен под названием реакция Рида . Реакция нашла некоторое ограниченное промышленное применение в США и Германии для производства алкилсульфокпслот, легко получаемых нри гидролизе алкилсульфонилхлоридов [56, 7]. При производстве но этому методу сульфонатов (применяемых как детергенты и смачивающие агенты) из разнообразных парафинов предпочтение отдавали углеводородам, содержащим в молекуле от 12 до 16 атомов углерода. Получены также сульфонаты из парафина и более высокоплавкого парафина, получаемого но процессу Фишера—Тропша [7]. В парафинах с длинными цепями сульфонилхлорид может замещаться, но-видимому, в любое положение. Из простых парафинов пропан дает приблизительно равные выходы пропан-1-сульфонил-хлорида и вторичного производного. к-Бутан дает приблизите.тьно 1/д бутан-1-сульфонилхлорида и бутан-2-сульфонилхлорида изобутан дает только первичное производное. По данным [28] нри использовании в качестве катализатора азосоединения реакция протекает при температурах от Одо 75° без света. Имеются сведения, что добавка фосфорной кислоты [23, 26] в реакционную смесь нейтрализует вредное влияние загрязнений железа. Промышленному применению процесса препятствуют нежелательное образование хлоридов и другие факторы. [c.92]

    Получение катализатора — твердой фосфорной кислоты — состоит в смешении фосфорной кислоты с диатомитовой землей (кизельгур), а в некоторых случаях с окисями алюминия, магния, цинка и алюмосиликатами, чтобы получить пластические смеси, которые прокаливаются при томиературах 180—300°. Прокаленные смеси затем размельчаются, просеинаются и отбирается фракция гранулированных частиц со средним диаметром от 2 до 10 мм. Для промышленного применения эти катализаторы изготовляются обычно в форме таблеток или цилиндриков, формуемых из пластической смеси, с последующим прокаливанием. [c.196]

    Образование моноэтилсульфата из этилена и гидролиз последнего в этиловый спирт описаны Фарадеем в 1827 г., но первое успешное промышленное применение эта реакция получила лишь столетием позже, когда производство этилена и его выделение фракционной перегонкой стали достаточно совершенными. В 1897 г. пытались получить этиловый эфир из этилена нефтяного газа, полученного при помощи крекинга, с применением сорной кислоты в Ричмонде (штат Вцргиния) и в Бруклине (штат Нью-Йорк) [19]. [c.353]

    Пропилен реагирует с серной кислотой значительно легче этилена, и кислота концентрацией 65 — 70% при умеренном давлении и температурах выше 100° взаимодействует с ним со скоростью, вполне удовлетворительной для промышленного применения. При этих условиях обра- [c.353]

    Хлоргидрины многих олефинов получены уже давно, в основном при помощи метода Кариуса, но единственным промышленным применением хлоргидринов было использование их для производства этилен-и пропиленгликолей и синтетического глицерина [88]. Производство синтетического глицерина основывается на реакции хлорноватистой кислоты с хлористым аллилом или аллиловым спиртом, а такн<е на гидролизе весьма реакционноснособных эпоксидов, эпихлоргидринов и гли-идов (эпигидриновых спиртов)  [c.371]


Смотреть страницы где упоминается термин Промышленное применение: [c.232]    [c.150]    [c.179]    [c.167]    [c.117]    [c.46]    [c.4]    [c.142]    [c.4]    [c.79]    [c.81]   
Смотреть главы в:

Новейшие достижения нефтехимии и нефтепереработки том 9-10 -> Промышленное применение

Сополимеризация -> Промышленное применение

Ионообменная технология -> Промышленное применение

Синтетические моющие и очищающие средства -> Промышленное применение

Ионообменная технология -> Промышленное применение


Химическая литература Библиографический справочник (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Применение в промышленности



© 2025 chem21.info Реклама на сайте