Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Огнестойкие пенопласты

    Некоторые неорганические наполнители (триоксид сурьмы) улучшают огнестойкость пенопласта, но при этом увеличивают кажущуюся плотность и теплопроводность материала. Огнестойкость можно повысить также с помощью таких добавок, как борная кислота, эфиры борной кислоты, галогенированные эфиры фосфорной кислоты, карбамид, тиомочевина, дициандиамид, меламин и др. [23, 26]. [c.175]


    Ее используют в производстве огнестойких пенопластов, смачивающих агентов, добавок к смазочным маслам, а также в р,яде других областей [142]. [c.389]

    Научно-исследовательские работы в области пенополиуретанов направлены на получение жестких огнестойких пенопластов более экономичными методами с применением простого и дешевого оборудования, а также на замену сложных полиэфиров простыми. Наличие 240 [c.240]

    Концентрация катализатора и силиконовых ПАВ также влияют на огнестойкость пенопласта. [c.126]

    Пенопласты на основе фенолоформальдегидных полимеров обладают наиболее высокими пределами рабочих температур, огнестойкостью и формоустойчивостью в широком температурном интервале, они используются в качестве конструкционных и изолирующих материалов в строительстве, авиации, машиностроении. [c.4]

    ПЕНОФЕНОПЛАСТЫ м мн. Пенопласты на основе фено-ло-альдегидных смол применяются как огнестойкий теплоизоляционный материал в строительстве, судо- и вагоностроении. [c.307]

    Большой интерес в качестве теплоизоляционного материала вызывают фенольные пенопласты, в первую очередь благодаря огнестойкости и низкому дымообразованию. Их начинают все шире применять для теплоизоляции крыш и иногда стен. [c.229]

    Осиовную часть пенополиуретанов (87% 1960 г. и 72% в 1970 г.) составляют мягкие пенопласты. Однако предполагают, что в будущем производство жестких пенопластов будет развиваться более быстрыми темпами, что обусловлено низкой плотностью этих материалов, возможностью их получения непосредственно на месте применения, а также простотой оформления технологического процесса. Увеличивается выработка огнестойких сортов с 3,2 тыс. г в 1902 г. до 15,9 тыс. т в 1965 г. (в том числе 13,6 тыс. т жестких) и 71,1 тыс. т в 1970 г. (59,4 тыс. т жестких). [c.237]

    Огромное значение для безопасности изотермического хранения сжиженных углеводородов имеет огнестойкость стен. В качестве теплоизоляционных материалов применяют неуплотненную перлитовую крошку, стекло, полистирол в блоках, монолитный пенопласт, стекловату и др. Наиболее огнестойким является перлит, изготовляемый высушиванием вулканической породы при температуре около 1090 °С. Этот материал не горит и защищает внутренний резервуар. Опыт эксплуатации изотермических хранилищ за рубежом показывает значительное преимущество изотермического [c.289]

    Клеи на основе сополимеров винилиденхлорида, главным образом с винилхлоридом, используют при склеивании алюминиевой фольги с бумагой, поливинилхлоридной пленки со стеклотканью, для соединения пенопластов с металлами, асбестоцементом и другими материалами в производстве слоистых панелей в строительстве, их рекомендуется применять для крепления резины к металлам и неметаллическим материалам. Особое место занимают полимерцементные клеи на основе сополимеров винилиденхлорида с винилхлоридом, применяемые в строительстве взамен обычных строительных растворов для повышения адгезии в кирпичной кладке. Большое значение имеет повышенная огнестойкость этих клеев, обусловленная высоким содержанием хлора в сополимерах. [c.100]


    По этой же причине огнестойкость синтактных пеноматериалов всегда выше огнестойкости соответствующих химических пенопластов на основе тех же связующих. Способы повышения огнестойкости синтактных материалов, основанные на модификации и введении огнезащитных добавок в полимерное связующее, ничем не отличаются от обычных методов снижения горючести полимерных материалов. Важно только, чтобы применяемый способ не уменьшал прочности адгезионной связи между связующим и наполнителем. В СССР, в частности, получены синтактные пластики на основе специальных полиэфирных связующих, время горения и потери массы которых уменьшены соответственно в 4— 60 и 24—180 раз по сравнению с немодифицированными материалами [222]. [c.197]

    Тип наполнителя также оказывает определенное влияние на огнестойкость материала замена любых микросфер на углеродные всегда способствует снижению горючести СП [73, 74, 77]. Карбонизованные пенопласты являются негорючими материалами [75— 77, 194—197]. [c.197]

    Свойства пенофенопластов, наполненных легкими минеральными веществами, зависят от типа и размеров частиц наполнителя и от содержания смолы. У наполненных пенофенопластов значительно возрастает огнестойкость. Так, пенопласт, наполненный керамзитом, выдерживает в течение 90 мин одностороннее воздействие пламени (температура 1025 °С). За это же время температура плиты толщиной 13 см с внутренней стальной арматурой повышается на 58 °С. Предполагают, что это свойство сохраняется у пенопласта в течение 25 лет. Некоторые свойства пенофенопласта с керамзитовым наполнителем [30% (масс.) смолы на 100% (масс.) наполнителя] приведены ниже  [c.241]

    Повышения огнестойкости (наряду с увеличением эластичности пенопласта) можно достичь также, используя в качестве модификаторов эпоксидные смолы [90]. Если тримеризация изоцианата осуществляется в присутствии третичного амина, то эпоксидные смолы одновременно являются сокатализаторами в процессе образования пен. [c.118]

    Большинство описанных модифицирующих агентов [19], позволяющих повысить эластичность отвержденных фенольных смол (длинноцепные днолы, нолнолы, ПВС, ПВА, эпоксидные смолы и днизоцианаты [39]), снижают реакционную способность смол прп кислотном отверждении н у.худшают огнестойкость пенопластов [c.174]

    Фенольные пенопласты ФРП-1 и ФЛ-1 являются трудносгораемыми материалами — они не горят, а только обугливаются пенопласты ФФ и ФК сгорают, но после вынесения из пламени горение прекращается. Способы, повышающие теплостойкость фенольных пенопластов, как правило, увеличивают и их огнестойкость. Введение антипиреновых добавок на основе органических галоген-и фосфорсодержащих соединений и неорганических веществ (аммониевые соли серной, соляной, фосфорной кислот и др.) повышают огнестойкость пенопластов (223). [c.200]

    Материалы на основе немодифицированных полимеров, не содержащие антипиренов, обычно отличаются высокими значениями потерь массы при горении, высокими температурами поверхности. Например, пенопласты на основе полимера ФРП-1 после вынесения из пламени длительное время сохраняют высокую температуру. Для избежания этих недостатков проводят химическую модификацию полимеров с введением фосфорсодержащих фрагментов, фосфор-и фосфоргалогенсодержащих антипиренов и наполнителей. В частности, для повышения огнестойкости пенопластов на основе полимера ФРП-1 вводят добавки вспученного перлита. При этом показатель возгораемости уменьшается в 1,5 раза, потери массы снижаются почти в 10 раз, температура отходящих газов — почти в 2 раза [104]. [c.129]

    Огнестойкие пенопласты подучают из ХПЭ (20-50% хлора) и 50-90% сополимера стирола и акрилонитрила и другиш смолами с применением порообразователей типа азодикарбонамида, МаШ О и т.п.  [c.28]

    Для зданий II и III степени огнестойкости, возводимых в труднодоступных пунктах строительства, допускается применение наружных ограждающих конструкций (стен и по-Крытай) из алюминиевых листов с эффективными утеплителями (пенопласт марок ПСБ-С и ФРП-1). [c.35]

    Вторая не менее важная причина возрождения промышленности ФС связана с энергетическим кризисом. Хорошо известно, что сегодня одним из немногих реальных путей разрешения этого кризиса является экономия энергии за счет использования эффективных тепло- и хладоизоляционных материалов, имеющих низкий коэффициент теплопроводности. Оказалось, что ассортимент таких материалов, изготавливаемых на основе ФС, необычайно широк немаловажно при этом, что они обладают низкой стоимостью и высокой огнестойкостью. Вот почему в последние годы столь интенсивно развивается индустрия пористых и волокнистых материалов, используемых буквально во всех отраслях промышленного и гражданского строительства пенофенопласты, стекломаты и сотопласты на фенольных связующих, древесностружечные н древесноволокнистые плиты и т. д. Например, в США с 1981 по 1985 гг. производство фенольных пенопластов увеличится в 8 раз — с 5 до 40 тыс. т, тогда как выпуск пенополистирола и жесткого пенополиуретана возрастет только в 2 и 3 раза соответственно. В СССР доля фенольных пенопластов в общем объеме всех типов пенопластов самая высокая — 23,6%, а среднегодовые темпы роста в X пятилетке были наибольшими — 387р в год, [c.10]


    Фенольные пенопласты (ФП) занимают особое положение среди вспененных полимеров, применяемых в качестве изоляции в строительстве [18]. Это объясняется уникальным сочетанием ряда свойств этих материалов высокая огнестойкость, высокая термостойкость, 1п-1зкое дымовыделение, хорошие звуко- и теплоизоляционные характеристики. Несмотря иа это, рынок ФП развивается очень медленно. Это является следствием существования в большинстве стран некомпетентной официальной оценки, несовершенной классификации строительных материалов ио горючести, а также относительно высокой стоимости этих материалов. [c.173]

    Сшивание резола иронсходит при добавлении сильных неорганических нлн органических кислот, например соляной, фосфорной, /г-толуол- или фенолсульфоновой применяют также смесь соляной кислоты и этиленгликоля (1 1). Достоинством соляной кислоты является ее высокая активность, недостатком — коррозионная активность. Фосфорная кислота, придающая полученным пенопла-стам повышенную огнестойкость, обычно используется в комбинации с другими сильными кислотами, например с серной н л-толуол-сульфоновой. Фенолсульфоновая кислота способна встраиваться в макромолекулу резола, что уменьшает опасность коррозии металлов, контактирующих с пенопластом. Однако ее стоимость значительно выше стоимости неорганических кислот. Предложено также использовать в качестве отверждающего агента сульфонированные новолаки на основе фенола [23, 24] пли резорцина [25]. Обычно ФС кислотного отверждения отличаются высокой хрупкостью, малой ударной вязкостью и низкой стойкостью к абразивному износу, Эти недостатки до сих пор не устранены. [c.174]

    В зарубежной практике огнезащитные мастики и огнестойкие замазки широко применяются с 1970 г. (в ФРГ, США, Японии, Италии, Бельгии и других странах). Огнезащитные покрытия, применяемые в настоящее время для защиты кабелей, можно разделить на две группы вспучивающиеся и невспучивающиеся. Вспучивающиеся покрытия под действием тепла создают слой микропористого пенопласта, который изолирует горючий материал от пламени. Невспучивающиеся покрытия обеспечивают ингибирующее защитное действие. В качестве связующих материалов огнезащитных составов наиболее частое применение находят хлоркаучук, поливинилхлорид и его сополимеры, хлорпара-фин и аналогичные вещества в комбинации с фосфорорга-ническими соединениями. [c.143]

    ОП наносят чаще всего .на пов-сть древесины, древесностружечных и древесноволокнистых плит, пенопластов и стеклопластиков, а также строит, конструкций (для повышения их пределов огнестойкости). Эффективность ОП определяется их теплоизолирующей способностью, зависящей в осн. от толщины покрытия, к-рая обычно не превышает нек-рую величину, характеризующую его прочностные св-ва. Поэтому перспективны вспучивающиеся покрьггия, толщина к-рых увеличивается в результате теплового воздействия при пожаре. Осн. компонентами таких покрытий являются связующее, фосфорорг. антипирены (фосфаты мочевины и меламина, полифосфаты аммония и др.), наполнители и вспучивающиеся добавки-пенообразователи. Связующим чаще всего служат полимеры (аминоальдегидные полимеры, латексы на основе сополимеров винилиденхлорида с винилхлоридом, стиролом или акрилонитрилом, галогенирован-ные сиитетич. и натуральные каучуки, эпоксидные смолы и полиуретаны), склонные при повыш. т-рах к р-циям циклизации, конденсации, сшивания в образования нелетучих карбонгоир. продуктов. [c.327]

    П. разрушаются в конц. щелочах, набухают в кетонах и спиртах. По хим. стойкости П. мало отличаются от невспененных фенопластов аналогичного состава. П.-трудновос-пламеняемые материалы, при их горении выделяется мало дыма, тепла и токсичных газов. Они наиб, огнестойки среди многотоннажных пенопластов. [c.460]

    Шахты с объединенными каналами выполняют из легкого бетона (рис. 4.396), каркасные гиахты - с заполнением малотеплопроводным огнестойким и влагостойким материалом (пенопластом, пеностеклом, пенокерамзитом и др.) из бетонных плит - с утеплением из досок толгциной 40 мм, обитых с внутренней стороны кровельной сталью по войлоку, смоченному в глиняном растворе, и огитукатуренных по драни с наружной стороны. [c.947]

    Во Франции налажен выпуск пенопластов на основе резольных полимеров, отличающихся повышенной термостабильностью, огнестойкостью и несгораемостью [24—28] разработаны эластичный ре-зольный фенопласт и способ его получения, заключающийся в том, что в жидкий полимер вводят изоцианат, который реагирует одновременно как с водой, так и с —ОН-группами полимера. При введении многоатомных спиртов изоцианат взаимодействует с —ОН-группами спиртов [29]. Для производства резольных пенопластов разработаны процесс и установка непрерывного действия, имеющая длинный ленточный конвейер, ширина и высота которого регулируются. Благодаря движению гусеничных конвейеров происходит транспортирование композиции [30, 31]. Французская фирма Сен-Гобен разработала непрерывный способ производства многослойных панелей для строительства легких конструкций, утепленных фенольным пенопластом. Панели облицовываются алюминием или оцинкованной сталью [32]. [c.14]

    В США почти половину пластмасс, используемых для изготовления корпусов конторских машин, составляют структурированные пенопласты. Среди них на первом месте стоит модифицированный полифениленоксид. Широко применяют для этих целей поликарбонаты, АБС-сополимеры и полистирол. Так, корпуса дисплеев могут быть изготовлены из литьевого АБС-сопо-лимера, структурированного пенополистирола или полиуретанов. Расширяется применение экономичных пластмассовых сплавов. Например, использование высокопрочного огнестойкого сплава поликарбоната и АБС-сополимера позволяет снизить стоимость корпуса пишущих машинок на 7% по сравнению с наполненным термопластом и на 20% — по сравнению с поликарбонатом. [c.139]

    Низкое водопоглощение и высокая устойчивость к гидростатическим давлениям определяет широкое использование синтактных пенопластов в качестве плавучих средств и материалов для создания глубоководных аппаратов. Такие материалы должны удовлетворять следующим основным требованиям низкая сжимаемость при высоких гидростатических давлениях низкий термический коэффициент расширения низкое водопоглощение огнестойкость [12]. До последнего времени для глубоководного погружения применяли лсидкие (бензин, аммиак, силиконовое масло) и твердые (литий, дерево, пенопласты, пеностекло, пеноалюминий, монолитные полиолефины) высокоплавучие материалы. Однако 194 [c.194]

    При обугливании пенопластов образуе1 ся слой пенографита , устойчивый к высоким температурам и исключительно огнестойкий [21]. [c.240]

    Полиуретановые пеноматериалы нельзя применять при температурах выше 120—130 °С из-за сравнительно низкой стойкости уретановых групп и эфирных связей к термической и термоокислительной деструкции. В то же время известно [1—3], что продукты циклической тримеризации ароматических изоцианатов — цианураты, так же как и соединения, образующиеся при их де-карбонилировании (карбодиимиды), обладают высокой термостабильностью до 400 °С и огнестойкостью, по-видимому, обусловленными резонансной стабилизацией за счет я-электронной делокализации (сопряжения) необобщенных р-электронов азота и соседних кратных связей. Поэтому усилия исследователей и технологов были направлены на создание на основе ди- или полиизоцианатов новых типов пенополимеров, содержащих фрагменты с изоциануратными и другими гетероциклическими группами или карбодиимидными связями. Результатом этих работ явилось создание пенопластов и пеноэластомеров, выгодно отличающихся от ППУ и ряда других вспененных пластмасс стабильностью свойств при повышенных температурах и устойчивостью к воздействию пламени. [c.110]

    Огнестойкость изоциануратной пены в значительной степени зависит от кажущейся плотности, так как именно последняя определяет площадь активной поверхности полимера, подвергающейся действию окислителя (кислорода). Испытания образцов пенопласта с одинаковым содержанием одного и того же олигоэфира, но с разной кажущейся плотностью, показали, что с увеличением кажущейся плотности уменьшаются потери массы в огневой трубе Бутлера, причем в области низких значений кажущейся плотности эта зависимость выражена более резко. [c.126]

    В табл. 3.3 приведены некоторые свойства оксазолидонсодержащих пенопластов различного состава. Как видим, лучшей огнестойкостью обладают пены, содержащие эпоксиолигоэфир на основе бисфенола А и ЭХГ. [c.132]


Смотреть страницы где упоминается термин Огнестойкие пенопласты: [c.67]    [c.98]    [c.200]    [c.67]    [c.11]    [c.426]    [c.357]    [c.164]    [c.426]    [c.484]    [c.482]    [c.240]    [c.79]    [c.125]   
Фенопласты (1976) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Пенопласты



© 2025 chem21.info Реклама на сайте