Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олова сульфид хлорирование

    Хлор является весьма активным реагентом. При высоких температурах он способен вытеснять серу из сульфидов, а в присутствии восстановителей хлорировать окислы различных металлов и вытеснять из сульфатов, фосфатов, силикатов кислородные соединения серы, фосфора, кремния с образованием соответствующих хлоридов. Это используют в технологии благородных и цветных металлов при рафинировке золота, алюминия, свинца и олова а также в металлургии титана и редких металлов — циркония, тантала, ниобия и др.При хлорировании полиметаллических руд образующиеся хлориды могут быть разделены на основе различия в температурах испарения, а также методами экстракции [c.731]


    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]


    В результате взаимодействия сульфида олова с газообразным хлором образуются хлорное олово и полухлористая сера, которые разгоняются с получением в отдельных фракциях чистых продуктов. Хлорирование оловосодержащего концентрата имеет значение и как рациональный метод анализа сульфидного олова в рудах и концентратах. [c.41]

    Реакции эти проходят при 120—138° С при этом элементарная сера растворяется в хлористой сере в любых количествах. Это обстоятельство облегчает протекание гетерогенной реакции хлорирования сульфидов. Большая часть получаемых хлоридов металлов нерастворима в хлористой сере и может быть отделена от жидкости. Некоторые хлориды (мышьяка, сурьмы, олова, германия, селена, теллура и др.) хорошо растворяются в хлористой и элементарной сере. Это качество может быть использовано для отделения хлоридов по мере их накопления дробной дистилляцией хлористой серы. Хлорирование сульфидных руд в жидкой хлористой сере, по данным работы [93], позволяет в процессе хлорирования осуществлять групповое разделение компонентов и представляет собой непрерывный процесс с раздельной выдачей хлоридов металлов и элементарной серы. [c.42]

    Для выяснения механизма хлорирования оловянных концентра-тоВ содержащих сульфиды свинца и олова, и нахождения оптимальных условий очистки олова от свинца были изучены следующие системы [158—160]  [c.62]

    Указанное выше направление реакции свидетельствует о том, что хлористое олово и сульфид свинца совместно существовать не могут. При хлорировании сульфидов олова и свинца в первую очередь должно хлорироваться РЬЗ, а затем ЗпЗ. [c.64]

    Получение флотацией бедного оловянного концентрата (10—12% Sn) с доводкой шахтной плавкой илн возгоном в виде сульфида олова окислы железа удаляют выщелачиванием НС1 нли хлорированием и возгоном РеС1з, хлор регенерируют методом сжигания РеС1з с кислородом нлн с сухим воздухом с переводом Fe в окись Флотация в магнитном поле Электрофлота-ция шламов Флотация касситерита (р-полил-арсоновая кислота) [c.106]

    При применении двухлористой серы и хлора навеску высушенной пробы насыпают в фарфоровую лодочку, которую помещают в соответствующую трубку, постепенно нагреваемую, сначала в пределах 150— 240° С в течение 40—60 мин, а затем при 240—280° С в продолжение такого же периода времени, пропуская при этом струю сухого хлора и двухлористой серы. Последнюю получают осторожным нагреванием реагента в колбе при 40—50° С. Отходящие газы конденсируют в воде. Под конец лодочку и прилегающие к ней части трубки нагревают 5 мин при 280— 550° С, пропуская при этом струю одного только хлора, чтобы удалить летучие продукты, сконденсировавшиеся возле лодочки. При анализе ниобатов и танталатов рекомендуется дистиллят и промывные воды выпарить с серной кислотой, а затем остаток нагреть и обработать, как изложено в разделе Разложение фтористоводородной кислотой и последующая обработка (стр. 666) или в разделе Разложение сплавлением с пиросульфатом и дальнейшая обработка (стр. 669). Приводится также метод хлорирования с одной однохлористой серой, без хлора согласно которому в приемник наливают азотную кислоту и под конец операции пропускают струю хлористого водорода. Образующиеся в приемнике комки серы по возможности разминают сплющенной стеклянной палочкой, затем прибавляют раствор аммиака и пропускают сероводород. При этом сера, вольфрам, олово и др. переходят в раствор, а железо в виде сульфида осаждается вместе с ниобием и танталом. [c.672]

    Процесс хлорирования сульфида олова и концентратов, содержащих сульфид олова, детально рассмотрен в ВИМС. Природный минерал и яриготовленпый сульфид олова реагируют в среде четырех хлор истого углерода с газообразным хлором  [c.41]

    Обычно хлорируют в токе газообразного хлора. Иногда процесс проводят при нагревании с ЗгОа [5.1788] Д или четыреххлористым углеродом Д. Температура, обусловливающая количественное протекание реакции, определяется природой анализируемого вещества. Сульфиды мышьяка, сурьмы и олова хлорируются легко без нагревания. Другие соединения необходимо нагревать до 700 °С. Для того, чтобы свести к минимуму потери сравнительно нелетучих соединений, желательно проводить хлорирование при возможно более низкой температуре. [c.259]

    Методы разложения с применением иода как окислителя имеют менее важное значение, чем методы, основанные на хлорировании или бромировании. Водные растворы смеси иода и иодида калия, содержащие трииодид-ион 1з, применяют для растворения свинца, олова и сурьмы. Для разложения берут избыток иода и содержание металла определяют титриметрически по количеству иода, не вступившего в реакцию [5.1889]. При определении примесей в олове пробу обрабатывают раствором иод-иодида и затем из раствора отгоняют олово в виде 5п14. Иод-иодидный раствор можно использовать для определения пирофорного железа [5.1890]. Оксиды выделяют из стали растворением металлической матрицы в растворе иода в абсолютированном этаноле [5.1891] водные растворы иода для этой цели не применяют. В модифицированном методе в качестве растворителя применяют метанол (70 г 2 в 600 мл СНзОН) и разложение проводят в специальном приборе, исключающем доступ воздуха и влаги [5.1892]. Аналогичные растворы, например 120 г 1а в 1 л, рекомендованы для селективного окисления сульфидов в стали [5.1893]. [c.266]



Смотреть страницы где упоминается термин Олова сульфид хлорирование: [c.111]    [c.19]   
Методы разложения в аналитической химии (1984) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие хлористого олова с сульфидом свинца и металлическим свинцом .—Хлорирование оловянных концентратов и шламов при низких температурах

Олово сульфиды



© 2025 chem21.info Реклама на сайте