Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испарение селективное

    В настоящее время более широко используются высшие полигликоли — триэтиленгликоль и тетраэтиленгликоль, обладающие большей емкостью по сравнению с диэтиленгликолем и практически такой же селективностью. Применяемая в некоторых случаях смесь диэтиленгликоля с дипропиленгликолем по экстракционным свойствам близка к триэтиленгликолю. Схема экстракции гликолями изображена на рис. 5.9. Экстракция проводится при температуре 140—150 °С и давлении 0,7—1,0 МПа. Исходное сырье вводится в среднюю часть экстрактора Э-1, представляющего собой колонну с перфорированными тарелками. Растворитель подается на верх экстрактора. Из нижней части экстрактора насыщенный растворитель через камеру однократного испарения И-1 поступает в отпарную колонну К-1, где при давлении, близком к атмосферному, осуществляется процесс экстрактивной ректификации. Из верхней части этой колонны отводятся практически все содержащиеся в насыщенном растворителе неароматические углеводороды вместе с некоторой частью ароматических углеводородов и воды. Поток, выходящий из верхней части отпарной колонны, объединяется с потоком, выходящим из камеры однократного испарения, и после охлаждения и отделения от воды в разделительной емкости Е-1 направляется в нижнюю часть экстрактора, образуя орошение. Из средней части отпарной колонны выводятся чистые ароматические углеводороды [c.286]


    Непрерывное формование трубчатой полупроницаемой мембраны можно производить литьем формовочного раствора в осадительную ванну (рис. 111-20). Формовочный раствор выдавливается из кольцевой фильеры 1, наружный срез которой погружен в осаждающую жидкость. Газ (воздух) в камеру подсушки 2 подается по трубке (шаблону) 4. Уровень осаждающей жидкости (воды) в камере подсушки регулируется давлением подаваемого газа, который затем вместе с парами растворителя и частью осаждающей жидкости удаляется по трубке 5, проходящей через центр фильеры. Полученная трубчатая мембрана 3 обрезается на необходимую длину и может быть установлена в каналах пористого каркаса или соединена в блок. Управление процессом образования селективного слоя при этом способе формования достаточно сложное, так как регулирование времени подсушки производится изменением давления газа, что одновременно изменяет и скорость испарения растворителя, а также может привести к деформации трубчатой мембраны. Промышленное применение этого способа, видимо, возможно только при изготовлении капиллярных трубчатых мембран (до 3— 5 мм), используемых без каркаса при небольших давлениях. [c.129]

    Впервые ЖКК были созданы на базе холестерических кристаллов в 70-е годы для целей термографии. В водный раствор поливинилового спирта (ПВС) при перемешивании добавляли раствор холестерика для образовании эмульсии. Испарение воды приводило к затвердеванию пленки ПВС, в порах которой формировалась планарная текстура холестерика. Зачерненная с одной стороны пленка ЖКК обладала свойством вьфаженного селективного отражения, которое зависело от температуры. На этой основе в дальнейшем были разработаны термоиндикаторы. [c.151]

    При переводе полимера из раствора в твердое состояние путем испарения селективного растворителя получают пленки с различными свойствами — каучукоподобными для октана и сходными со свойствами полистирола для метилэтилкетона. [c.215]

    Вакуумная перегонка мазута. Основное назначение установок вакуумной перегонки (ВП) мазута топливного профиля - производство вакуумного газойля широкого фракционного состава (350 -500 С), используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза, а в некоторых случаях - термического крекинга с получением дистиллятного крекинг-остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов специальной (игольчатой) структуры. Помимо фракционного состава, вакуумный газойль должен удовлетворять требованиям по коксуемости и содержанию металлов, которые существенно влияют на активность, селективность и срок службы катализаторов процессов гидрооблагораживания и каталитической переработки газойлей. Типовой процесс ВП мазутов (рис. 2.5) обычно осуществляют по схеме однократного испарения в одной тарельчатой, а в последние годы и насадочной колонне при температуре 380 - 415 °С с подачей в низ колонны водяного пара при остаточном давлении в зоне питания 100 - 200 мм рт. ст. (133 - 266 гПа) и в верху колонны 60 - 100 мм рт. ст. (53 - 133 гПа). [c.47]


    Повышение концентрации в растворе снижает скорость испарения растворителя и тем самым способствует образованию плотного, так называемого активного (селективного) слоя на поверхности пленки. Регулирование пористости сухих мембран может проводиться изменением концентрации и условий испарения растворов, а также введением солей и других веществ, растворимых в воде. [c.48]

    Селективность двух несмешивающихся фаз можно оценить по двум критериям параметру растворимости Гильдебранда [43] и критической температуре растворения [44]. Эти свойства наряду с коэффициентами активности и полярностью молекул характеризуют межмолекулярное взаимодействие. Первый критерий определяется как корень квадратный из энергии испарения 1 см чистого вещества. Критическая температура растворения Гкр является максимальной температурой бинарной жидкой системы, при которой две несмешивающиеся жидкости могут находиться в равновесии. Критическая температура растворения и параметр растворимости связаны выражением [c.214]

    Атомно-абсорбционная спектрофотометрия — относительно новый метод химического анализа. Первые работы по его применению опубликованы в 1955 г. [856, 1633]. Вследствие высокой чувствительности и селективности, простоты выполнения и малой продолжительности анализа этот метод в настоящее время широко применяется для определения многих элементов, в том числе ЗЬ [265, 659, 709, 863, 1011, 1024, 1303, 1315, 1538, 1558, 1632]. Метод основан на способности свободных атомов каждого элемента поглощать излучение только определенной резонансной частоты. Вводя анализируемый раствор в пламя горелки или используя другой атомизатор, переводят большую часть элементов, находящихся в растворе в виде химических соединений, в свободные атомы. Условия атомизации подбирают так, чтобы определяемый элемент возможно большей частью переходил в свободные невозбужденные атомы. Кроме растворов, в последнее время в атомно-абсорбционной спектрофотометрии успешно применяется вариант с использованием твердых образцов. Благодаря импульсному характеру испарения и отсутствия разбавления анализируемого материала, чувствительность определения элементов в этом варианте существенно повышается. Поглощение резонансного излучения атомным [c.88]

    Если сырье является смесью летучего растворителя и нелетучего компонента (скажем, экстракта на установке селективной очистки масел), кривую зависимости давления начала испарения Рн от температуры можно построить, пренебрегая давлением нелетучего компонента, т. е. по формуле [c.215]

    Чтобы более полно отделить низкокипящий компонент, в колоннах этих групп можно проводить многократную перегонку путем циркуляции разделяемой смеси. Отметим также, что в данных дистилляторах испарение происходит только с поверхности пленки жидкости и молекулы селективно покидают эту поверхность без какого-либо механического воздействия [147]. [c.283]

    ВЖС применяются в качестве флотореагентов, растворителей синтетических смол, селективных экстрагентов некоторых солей, депрессоров испарения воды из водоемов. Основное количество производимых ВЖС перерабатывается в другие продукты целевого назначения  [c.283]

    Но дело заметно осложняется, если и селективность реакции оказывается не так уж высока, допустим 80%. В катализате образуются уже десятки различных химических соединений И для их разделения потребуется немало разнообразного оборудования, многочисленные циклы нагрев — охлаждение, испарение — конденсация... Следовательно, придется израсходовать много энергии, а значит, и средств. [c.112]

    При низких температурах окисление парафина протекает медленно, и в природных условиях нарафинистая нефть в естественных выходах на поверхности образует, в результате испарения летучих фракций, твердые темные массы, заключающие много парафина. В подходящих условиях этот парафин вместе с другими соединениями может частично окисляться за счет бактериальной деятельности. Однако ни в опытах с абиогенным, ни с биогенным окислением не получено доказательств селективного воздействия окислителей именно на высокомолекулярные парафины при наличии в смеси других классов органических веществ. [c.57]

    Процесс ART является комбинацией процесса селективного испарения сырья с процессом его декарбонизации и деметаллизации в псев-доожиженном слое. Сырье испаряется в лифт-реакторе с минимальной термической конверсией, позволяющей сохранить водород в жидких продуктах. Термически нестабильная смолисто-асфальтовая часть сырья адсорбируется на сорбенте-катализаторе с частичной термической деструкцией. Сорбент после отпарки в контакторе выжигается от коксовых отложений и возвращается в контактор. [c.128]

    Процессы соосаждения можно также классифицировать по числу участвующих твердых фаз. В том случае, если при соосаждении единственной твердой фазой в системе раствор г осадок является коллектор, говорят о соосаждении с участием одной твердой фазы. Именно на ней и происходят физико-химические процессы, связанные с включением микрокомпонентов. Соосаждение с участием нескольких твердых фаз означает, что при введении в исходную систему коллектора в ней происходят химические процессы, приводящие к образованию других твердых фаз, которые либо отделимы с коллектора, либо неотделимы от него. Разделять фазы можно следующими способами флотацией, седиментацией, центрифугированием, магнитной сепарацией, селективным растворением, испарением и т. д. [c.102]


    Одно- И многоступенчатые схемы имеют свои достоинства и недостатки. Как известно из теории процессов испарения и конденсации, в результате одноступенчатого процесса образуется больше жидкой фазы, чем при многоступенчатой конденсации сырья (при одних и тех же технологических параметрах). Однако в первом случае в жидкой фазе будет больше легких нежелательных компонентов (метана и др.), чем во втором, т. е. при одноступенчатом процессе селективность разделения на блоке НТК более низкая. Это приводит к увеличению эксплуатационных затрат на блоке деметанизации (деэтанизации) ШФУ. [c.179]

    Напряжения, вызванные ростом оксида Удаление определенных элементов твердого раствора в результате селективного окисления или испарения [c.35]

    Растворение упрочняющих выделений в результате селективного окисления или испарения [c.35]

    Другая основная операция, проводимая в вакуумных системах,— разделение веществ на основе разных упругостей их паров. Этот процесс проходит количественно в том случае, если упругости паров различаются на три порядка этот способ непригоден для разделения веществ с близкими температурами кипения. Разделение может быть основано на конденсации менее летучего компонента или на селективном испарении более летучего компонента более эффективным является первый способ. Работу применяемой для этой цели аппаратуры (рис. 586) можно пояснить на примере [c.664]

    Наиболее часто используемым материалом для электродов является графит. Графит обладает рядом интересных свойств нет загрязнений другими элементами, кроме углерода, он имеет прекрасную электропроводность и термическую устойчивость, и его стоимость невысока. Один из электродов используют для подачи пробы, обычно имеющей вид порошка, в разряд. Разряд создают между поверхностью пробы и другим электродом (противоэлектродом) (рис. 8.1-4). Это приводит к расходу пробы и образованию углубления. Может происходить селективное и неравномерное испарение. Проба может быть также помещена в коническом отверстии одного из графитовых электродов. Такую конфигурацию используют для определения легколетучих элементов в присутствии устойчивой основы. Металл в процессе разряда плавится и образует [c.21]

    На рис. 3-6 представлена схема устройства для ввода пробы охлажденной иглой. Игла шприца, находясь во входной трубке, охлаждается холодным воздз хом или газообразным диоксидом углерода, циркулирующим в узле охлаждения. В горячей камере испарителя находится только кончик иглы длиной 2-3 мм. Стеклянный вкладыш не охлаждается, поскольку узел охлаждения тщательным образом теплоизолирован. Ввод пробы охлажденной иглой позволяет избежать селективного испарения компонентов пробы из иглы. Кроме того, использование такой методики сводит к минимуму влияние условий работы со шприцем на результаты анализа [16, 18]. Это очень важно, поскольку при ручном вводе пробы с делением потока можно получить надежные и воспроизводимые данные, рассчитанные по относительным площадям пиков, но редко — по абсолютным. Ири вводе пробы охлажденной иглой были получены правильные и воспроизводимые данные как об относительном, так и об абсолютном содержании углеводородов Сю — С32. Ввод пробы охлажденной иглой можно автоматизировать. [c.36]

    Для процесса разделения испарением через мембрану применяют пористые и непористые мембраны, обычно на основе различных полимеров (например, полипропилена, полиэтилена и др.). На основе неорганических материалов (например, керамики) изготовляют пористые мембраны. Эти мембраны обладают большим гидродинамическим сопротивлением, поэтому их целесообразно изготовлять композитными - в виде закрепленных на пористых подложках ультратонких селективных пленок. Наибольшие селективность и проницаемость наблюдаются у лиофильных систем, т. е. когда полярности мембраны и компонента разделяемой смеси совпадают. [c.334]

    Метод масс-термографии основан на тех же принципах, что и метод масс хроматографии. В этом случае образец помещают вблизи области ионизации масс-спектрометра и постепенно повышают температуру. При этом происходят испарение веществ и их частичное фракционирование. Если прибор настроен на один ион (селективное ионное детектирование), то получают кривые испарения, соответствующие данному иону. Площади под кривыми пропорциональны количеству детектируемого вещества. [c.194]

    Испарение селективное в измерени инфракрасного излучения 134 Источники света в спектроскопии [c.732]

    Испарение — переход исходных материалов из жидкого агрегатного состояния в газообразное (пар). В печах испарение происходит при определенной постоянной температуре, если исключено заполнение объема насыщенным паром. Давление 1асыщенного пара зависит только от температуры и повышается с ее возрастанием. Испарение компонентов исходных материалов в печах осуществляется для селективного разделения расплавов. [c.18]

    Первичная перегонка нефти —100 Вакуумная перегонка мазутов и гудронов —22.2 Термический крекинг —14,2 Каталитический крекинг, включая каталитическую очистку мотобензина — 12,0 Глубокая переработка тяжелых нефтяных остатков (контактное испарение гудрона) —13,3 Газофракционирующие установки — 2.8 Малоочистные установки —10,6 Селективная очистка, включая дзасфальтизацию гудронов — 6,2 Пирогенные установки — 2,7 Производство битума и кокса — 2,5 Электрообессоливание —80,0 [c.183]

    Если селективность процесса сильно зависит от степени конверсии исходного реагента, единичная барботажная колонна становится неаыгодной для непрерывного процесса из-за сильного переме-шива )ия жидкости. На рис. 105, в изображен каскад барботажных колонн жидкая реакционная масса последовательно перетекает из колонны в колонну, а воздух подают раздельно в каждую. Здесь изображен способ теплоотвода за счет испарения углеводорода или растворителя. Их пары конденсируются в обратных кон- [c.367]

    Азеотроиная ректификация находит в настоящее время ограниченное применение при выделении углеводородов вследствие присущих ей недостатков узкого выбора растворителей, ограниченного условием (5.6), сравнительно низкой селективности растворителей, дополнительного расхода теплоты на испарение растворителя и сравнительно сложного технологического оформления процесса. Азеотроиная ректификация остается экономически выгодным процессом разделения ири очистке целевого продукта от примесей, которые могут быть отогганы при добавлении сравнительно небольшого количества компонента, образующего азеотроп. [c.69]

    Преимуществом ацетона как растворителя является его достаточно высокая селективность, низкая температура кипения и малая теплота испарения, доступность, дещевизна и меньщая, по сравнению с пиридиновыми основаниями, токсичность. В то же время из-за высокой летучести ацетона оказываются большимн его потери. В табл. 53 даны расходные коэффициенты и качество продуктов, получаемых при обогащении пиридиновьими основаниями и ацетоном. [c.307]

    В настоящее время азеотропная ректификация находит ограниченное применение при выделении углеводородов вследствие присущих ей недостатков — узкого выбора растворителей, ограниченного условием (1), сравнительно низкой селективности растворителей, дополнительного расхода теплоты на испарение растворителя и достаточно сложного технологического оформления процесса. Ее применение остается иногда эффективно при очистке углеводородов от примесей, отгоняемых с азеотропобразующим компонентом. [c.56]

    Исследовалась зависимость селективности растворителей от их химического строения и на основе установленных закономерностей сформулирован ряд принципов для направленного поиска эффективных экстрагентов [47—49] 1) введение в молекулу растворителя заместителей или гетероатомов с низкими вкладами в энтальпию испарения и с высокими значениями констант Гам-мета— Тафта 2) переход от алифатических соединений к соответствующим циклическим и гетероциклическим аналогам, проявляющим более высокую селективность 3) повышение растворяющей способности растворителей путем скелетной изомеризации молекул, предпочтительно фрагментов, удаленных от электрофильных центров 4) уменьшение размеров цикла или числа углеродных атомов в молекулах алифатических растворителей 5) взаимное расположение заместителей в молекулах растворителей, обеспечивающее минимальное экранирование электрофильных центров и невозможность образования внутримолекулярных водородных связей 6) переход от сильноассоциированных растворителей к слабоассоциированным производным (например, метилирование амидов, цианоэтилирование спиртов) 7) использование в качестве разделяющих агентов неидеальных смесей [c.57]

    Одним из эффективных процессов, обеспечивающих глубокую очистку нефтяных остатков от нежелательных примесей является процесс облагораживания сырья на мелкодисперсном контактном материале. При осуществлении процесса АКО , разработанного под руководством Т. X. Мелик-Ахназарова во ВНИИ НП, происходит селективное испарение сырья на твердом мелкозернистом контактном [c.125]

    Атомно-ионизационный метод анализа был бы невозможен без использования лазеров. Поскольку наиболее селективным методом ио1П1зации атомов является нх предварительный перевод в одно из возбужденных состояний и поскольку в видимой и ультрафиолетовой областях спектра лежат спектральные линии атомов многих элементов, то имеиио лазеры, генерирующие излучение в этих областях, являются неотъемлемой частью любого прибора для атомно-ионизационного метода. В основном это лазеры, работающие на органических красителях как активных средах. Непрерывная перестройка длины волны излучения, достаточная для достижения (во многих случаях) режима насыщения, сделала лазеры на органических красителях незаменимым средством селективного возбуждения атомов многих элементов. Существует много типов таких лазеров. Наиболее часто используемые лазеры имеют следующие xapaivTepH THKH область непрерывной перестройки от —300 до 800 нм, выходная мощность 1—20 кВт в линии генерации, ширина которой варьируется от 1 до 0,01 нм при длительности 7— 12 НС в случае лазерной накачки и 1—50 мс при ламповой накачке лазера на красителях. Следующей неотъемлемой частью установки является атомизатор, в качестве которого наиболее широко, как это уже упоминалось, используется пламя, а также электротермические атомизаторы с испарением находящихся в них образцов в вакууме. Находят применение и различного вида электротермические атомизаторы, работающие при атмосферном давлении. [c.185]

    Многие из величин Стс еще требуется определить количественно или хотя бы качественно. Тем не менее мы предположим, что при определенных составах и микроструктурах сплавов, средах и состояниях напряжения некоторые эффекты должны быть доминирующими. В частности, применяя этот метод анализа к основному примеру поведения I типа, а именно к случаю суперсплава на никелевой основе с умеренно крупным зерном [14, 18—21], мы отметим в соответствии с эффектами, перечисленными в табл. 5, следующие положения. В такой упрочненной системе, как данный сплав (временное сопротивление 1033 МПа даже при 760 °С [169]), маловероятно, чтобы какие-либо эффекты твердого раствора существенно влияли на внутренние напряжения. Выше отмечалось, что зернограничными эффектами также пренебрегали. Основной эффект, как можно предположить, в этом случае будет связан с величинами Стс, аналогичными входящим в уравнение (19), Иными словами, упрочнение рассматриваемой системы на воздухе обусловлено противодействием образованию и движению дислокаций со стороны окалины с хорошей адгезией, формирующейся при испытаниях на ползучесть на воздухе, но отсутствующей при испытаниях в вакууме (см. рис. 10) или в горячей солевой среде [14]. Микрофотографии, представленные на рис. 10, показывают также, что в результате ползучести (как на воздухе, так и в вакууме) поверхностные слои подложки постепенно становятся однофазными. На воздухе образуется фаза 7, вероятно, посредством селективного окисления алюминия и титана, а в вакууме образуется фаза у вследствие испарения хрома. Важно, что ни в одном случае поверхностные слои подложки не являются днсперсноупроч-ненными. Таким образом, эти эффекты будут иметь тенденцию к самокомпенсации при любых попытках, подобных этой, проанализировать сравнительное поведение системы на воздухе и в вакууме. [c.37]

    На рис. 8.33 показана динамика измерения во реме ни содержания кислоты, отнесенного ко всей массе отложений. При всех температурах первые 10—20 мин характеризуются ростом относительной концентрации кислоты в отложениях. Так как масса кислоты увеличиваться не может, рост концентрации обусловлен интенсивным селективным испарени-ем воды. Дальнейший ход — кривых зависит от характера испарения собственно кислоты. Как видно из графика темп испарения круто нарастает вместе с температурой. Однако дал<е при ЗОО С периода в 80 мин оказывается явно недостаточно для возгонки всей кислоты. [c.273]

    Ионизация определяемого вещества осуществляется либо путем химической ионизации с использованием растворителя, либо за счет термораспыления. В первом случае используются электроны с распылительного электрода или нити накала для ионизации молекул растворителя, что затем инициирует перенос заряда на определяемое вещество. Другой вариант основан на механизме ионного испарения из капель, в которые включен летучий растворитель. В зависимости от того, используется ли разрядный электрод, изменяется механизм ионизации, что сильно изменяет селективность. Ионное испарение обычно приводит к ионам [М-ЬН]" " для проб с высоким сродством к протону. Или же детектируются ионы [М4-КН4] , если в буфере присутствует, например в форме ацетата аммония. Если детектируют отрицательно заряженные ионы, обнаруживаются либо ионы [М+Н] , либо отрицательно заряженные кластерные ионы, образуемые молекулами определяемого вещества и растворителя или анионами буфера. Однако оба варианта ионизации являются мягкими, поэтому приводят лишь к ограниченной фрагментации. Тем не менее, для получения характеристичного спекара фрагментации в ТРС-ЖХ-МС-анализе часто используют двойные квадрупольные приборы. В отличие от одинарных квадрупольных приборов, МС/МС-приборы позволяют получать фрагментационный спектр молекулярных ионов, выделяемых первым квадру-полем (рис. 14.3-3). Ионы вводятся через отсекатель с маленьким отверстием, который достигает непосредственно ионизационной камеры. Это позволяет достигать высокого вакуума, требуемого для разделения ионов. [c.623]

    Миниатюризация ввода пробы в коммерческих приборах, между тем, прогрессирует так сильно, что из общего объема пробы 3 мкл в автоматизированных приборах можно сделать множество вводов. При этом, однако, не исключено, что состав пробы во время ввода изменится. Причина заключается в занесении буфера в пробу или в селективном вводе определенных компонентов пробы при электрокинетическом вводе. Работа со столь малыми объемами затруднена, если объем пробы в автозагрузчике может изменяться за счет испарения. Эти эффекты можно уменьшить при помощи охлаждения пробы или использования герметичного затвора в сосуде для пробы. Если необработанные данные анализа представлены в форме хроматограмм или фореграмм, то количественные результаты анализа получают или определением высоты пиков, или после интегрирования в виде площади пиков. Только в области определения примесей количественное выражение их концентрации через высоту более надежно, чем через площадь пика. Этому есть две причины первая заключается в том, что при анализе примесей высота пика пропорциональна их концентрации, так как эффекты насыщения и перегрузки можно исключить, а вторая заключается в том, что ошибка автоматизированного определения высоты в этом случае меньше, чем при интегрировании пиков. Как только высота пиков возрастает, интегрирование становится рациональным и необходимым. [c.44]

    Верхняя часть этого устройства является классическим устройством ввода с делением/без деления потока в ней имеются вводы для газа-носителя и газа для обдз вки мембраны. Разработаны также безмембранные устройства [62, 63]. Верхняя часть узла ввода независимо от его констрзтсции всегда остается холодной. Проба вводится в стеклянный вкладыш при холодном устройстве ввода пробы. После удаления иглы шприца нагревают трубку испарителя. В результате происходит испарение растворителя и анализируемых веществ. Нагрев трубки ос тцествляется при помощи электричества (рис. 3-42) или предварительно нагретого сжатого воздуха. В зависимости от констрзтсции нагрев узла может быть стремительным [58,59] либо при постепенном линейном подъеме температуры с определенной скоростью (2-12 град/с) [63]. Использование таких устройств позволяет оптимизировать условия анализа термически неустойчивых соединений, работать в режиме отдувки растворителя, что важно при селективном детектировании с помощью ЭЗД или масс-спектрометра, осуществлять концентрирование с использованием многократного ввода. С помощью вентиля делителя потока можно работать как в режиме деления потока, так и без деления. Во время анализа или после него камеру испарителя охлаждают воздухом или диоксидом углерода. Иосле этого можно вводить следующую пробу. Охлаждение камеры испарителя занимает 1-5 мин. Ниже кратко рассмотрены основные режимы — холодный ввод пробы с делением потока, ввод с удалением растворителя и холодный ввод без деления потока. [c.62]

    Возможно [6] использование газохроматографических детекторов (пламенно-ионизационных, пламенно-фотометрических, термоионных, фотоионизационных, электронозахватных, хемилюминес-ценгных и др.), которые позволяют повысить чувствительность и селективность как в обьпшом, так и в микроколоночном вариантах жидкостной хроматографии. Для соединения жидкостного и газового хроматографов применяют интерфейсы, в том числе транспортные с движущимся носителем и прямого ввода с предварительным испарением элюента. Такая система применяется, например, для анализа [c.86]

    Затем, по мере того как раствор подвергался старению в течение 1—8 сут, из поликремневых кислот получали триметилсилильные производные сложного эфира, в которых группы SiOH исходных кислот превращались в группы SiOSi( H3)3. После удаления испарением и/или селективной экстракцией летучих олигомерных разновидностей производные поликремневых кислот с высокой молекулярной массой были проанализированы на содержание С, Н и Si, а их молекулярные i>ia bi были определены в бензоле с помощью чувствительного к давлению паров прибора — осмометра. Молекулярная масса поликремневой кислоты подсчитывалась на основании молекулярной массы сложного эфира и коррелировалась с величиной константы скорости реакции с молибденовой кислотой. В течение интервалов времени от 8 до 42 сут (точка гелеобразования) молекулярная масса оценивалась только на основании значений константы скорости молибдатной реакции. [c.354]


Смотреть страницы где упоминается термин Испарение селективное: [c.122]    [c.611]    [c.36]    [c.217]    [c.58]    [c.504]    [c.83]   
Современная аналитическая химия (1977) -- [ c.80 ]

Аналитические возможности искровой масс-спектрометрии (1972) -- [ c.127 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Волгин, Ю. И. Дытнерский, А. Н. Плановский. Исследование селективной проницаемости полимерных мембран при испарении через них разбавленных водных растворов летучих компонентов

Селективность испарения



© 2025 chem21.info Реклама на сайте