Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиамиды монокристаллы

    Пучок рентгеновских лучей, падающих перпендикулярно оси волокна кристаллического полимера, ориентированного вдоль этой оси, дает дифракционную картину, подобную полученной от монокристалла, вращающегося вокруг главной оси (рис. 44). Одна из осей кристаллических компонентов такого волокна параллельна или почти параллельна оси волокна, в то время как другие оси ориентированы по отношению к ней беспорядочно. Таким образом, когда пучок рентгеновских лучей пересекает неподвижное волокно перпендикулярно его оси, получается та же картина, что и при вращении монокристалла вокруг оси. Естественная ориентация в таких кристаллических полимерах, как целлюлоза и кератин, хорошо известна. Другие полимеры кристаллизуются и ориентируются только при растяжении. Особенно примечательны в этом отношении полиэфиры, полиамиды и некоторые каучукоподобные вещества. [c.81]


    Как уже указывалось, кристаллизация полимера практически осуществляется в определенном интервале температур (от температуры стеклования до температуры плавления). Ниже температуры стеклования тепловое движение звеньев незначительно и полимер, способный к кристаллизации, не кристаллизуется. Если температура стеклования полимера значительно ниже комнатной, то при обычных температурах такой полимер существует в кристаллическом состоянии (полиэтилен, полиамиды, политетрафторэтилен). Если температура стеклования полимера намного выше комнатной, то для получения полимера в кристаллическом состоянии его следует нагреть выше температуры стеклования. Например, температура стеклования изотактического полистирола -ЫОО°С. Ниже этой температуры он не кристаллизуется, выше 100 °С образуются кристаллы, которые плавятся при 220 °С. Поэтому монокристаллы изотактического полистирола получаются только из горячих растворов. [c.153]

    Изучение деформации монокристаллов на подложках проводили с различными по химическому и физическому строению полимерами — линейным полиэтиленом, изотактическим полипропиленом, полиоксиметиленом, поли-4-метилпентеном-1, полиамидом 6 и др. [c.164]

    Основная специфика поведения пластинчатых монокристаллов полиамида с доменной структурой определяется наличием в них плоскостей водородных связей, расположенных параллельно короткой диагонали кристалла . Специфические взаимодействия препятствуют развитию скольжения вдоль плоскости водородных связей, если направление растяжения совпадает или почти совпадает с направлением длинной оси кристалла. В этом случае образуются два ряда трещин под углами 30 и 120° к короткой оси. Если деформация осуществляется в направлении короткой оси, то развитие трещин происходит под разными углами — от параллельных длинной оси до параллельных краям кристаллов. Наконец, при растяжении под некоторыми углами к короткой оси возникает второй ряд трещин при удлинениях около 50%. При растяжении монокристаллов полиамида не обнаружено двойникования и кристаллографических переходов, а пластические деформации очень незначительны. [c.167]

    Стеклянные волокна имеют очень низкую стоимость и их измельчение для использования в полимерных композициях с короткими волокнами незначительно удорожает стоимость стеклопластиков, хотя при этом несколько снижается эффективность их усиливающего действия. Возможно даже снижение стоимости некоторых изделий из термопластов, таких как полиамиды при наполнении их стеклянными волокнами, хотя этот выигрыш в стоимости материала может понизиться за счет возрастания стоимости его переработки. С другой стороны, введение дорогих нитевидных кристаллов, таких, как кристаллы карбида кремния или оксида алюминия, целесообразно только при резко выраженном усиливающем эффекте. Так как монокристаллы обладают длиной больше критической, на практике обычно наблюдается высокая эффективность усиления ими полимеров, а вследствие малого диаметра и высокой прочности они значительно меньше повреждаются в процессах переработки. Кроме того, из-за чрезвычайно высокой прочности монокристаллы резко повышают прочность наполненных композиций при сравнительно низких объемных долях. Однако, несмотря на эти достоинства, высокая стоимость производства высококачественных монокристаллов требуемой прочности, длины и диаметра, а также дополнительные трудности получения полимерных композиций с ориентированными монокристаллами затрудняет их конкуренцию с обычными стеклопластиками. [c.98]


    Вставка — электронная дифракция образца полиамида 6 с монокристалла ось Ь (в направлении водородной связи) параллельна короткой оси кристалла. [c.24]

    Монокристаллы полиамида 6 н полиоксиметилена, вытянутые на майларе образуют трещины уже при удлинениях 5% [c.443]

    Сейчас уже нет никаких сомнений в принципиальной возможности получать монокристаллы любого полимера с регулярным строением макромолекул в интервале температур между температурой стеклования и температурой плавления кристаллов [24]. Известны многочисленные удачные попытки получения монокристаллов полиэтилена, получены кристаллы гуттаперчи [25], полиамидов [26], полиэфиров [27], полипропилена и полистирола [28], полиакриловой кислоты [291, поливинилхлорида [30] и др. Первые единичные кристаллы полимера — полиоксиметилена — были получены еще в 1932 г. [311, однако толчком к широкому изучению морфологии кристаллов полимеров были работы Келлера [32], Тилла [33] и Фишера [34[. Открытие в полимерах таких крупных морфологических структур, как монокристаллы, также нанесло удар по прежним представлениям о хаотической перепутанности макромолекул в полимерах. [c.32]

    Прочность и модуль волокон из простых и смешанных параароматических полиамидов без особых ухищрений сразу получаются соответственно 2—5 и 100—150 ГПа. Однако, так же, как и суперволокна из малополярных полимеров, полученные с помощью (правильно проведенной ) ориентационной вытяжки или ориентационной кристаллизации, они обладают одним существенным дефектом их прочность в поперечном направлении ничтожна по сравнению с продольной. Волокна и пленки претерпевают сильную фибриллизацию, т. е. самопроизвольно или при деформации (особенно кручении) распадаются на чрезвычайно тонкие фибриллы, которые при дальнейшей деформации образуют еще более тонкие линейные монокристаллы типа усов , столь хрупкие, что манипулирование ими практически невозможно. Они обнаружены уже достаточно давно, но детально до сих пор не исследованы. По-видимому, именно они образуют упоминавшийся каркас в ориентационно закристаллизованных волокнах. [c.389]

    Некоторые формы надмолекулярной структуры полимеров глобулярная (а), фибриллярная (б) и дендритная (в) формы в аморфном полимере (сополимер диэтилового эфира винилфосфиновой кислоты с акриловой кислотой) фибриллярный сферолит полиамида (г) пластинчатый сферолит изотактического полистирола (9) отдельный сферолит (е) и сферолитная лепта ( к-) изотактического полистирола (в поляризованном свете) сферолиты и кристаллы изотактического полибутилепа (з) монокристалл полиэтилена (и) глобулярный монокристалл вируса некроза табака (к) различные формы надмолекулярной структуры изотактического кристаллического полипропилена (л, м, н) и соответствующие им диаграммы растяжения (о). [c.161]

    Интересные результаты были получены при поликонденсацин в твердом состоянии смеси солей различных диаминов, в результате чего происходило образование сополимера — смешанного полиамида 2 . На примере п-ацетоксибензойной кислоты показано, что поликонденсация в твердом состоянии в отсутствие катализаторов протекает медленно. Применение вакуума и катализаторов ускоряет реакцию Путем поликонденсации в твердой фазе монокристаллов ю-аминокапроновой кислоты в вакууме при 173° С получен поли-е-капроамид в виде высокоориентированного полимера ззэ. [c.70]

    Путем осаждения из разб. р-ров получепы полимерные монокристаллы правильной формы. Эти монокристаллы в случае полиэтилена состоят из плоских слоев, образованных примкнувшими друг к другу лентами. При этом ленты соединяются в слои т. обр., что направления осей макромолекул оказываются пернендикулярпыми плоскости слоя. Следовательно, для монокристаллов по.димеров характерны сложные структуры, возникающие и разрушающиеся в несколько стадий (пачка, ленты, слои, монокристаллы). Кроме ограненных монокристаллов, у ряда полимеров (гуттаперча, нек-рые полиамиды и полиэфиры и др.) на электронномикроскопич. снимках обнаружены различные другие своеобразные структурные образования, к-рые, очевидно, также построены из сложенных в лепты пачек макромолекул. Доказана тесная связь этих ленточных форм со строением сферолитов, наблюдающихся в кристаллич. полимерах очень часто, но пока еще мало изученных. [c.422]

    ДЯ ИЗ специфических особенностей структуры этих соединений. Указанные авторы ис110льзова.ли для объяснения механизма пропесса вытягивания аналогию, существующую между деформацией полиамидов и пластической деформацией монокристаллов металлов. Процесс деформации монокристаллов был избран в качестве модели, так как при деформации монокристаллов наблюдаются явления, очень напоминающие процесс вытягивания через шейку [71]. Брозер, Гольдштейн и Крюгер, принимают, что при приложении нагрузки к невытянутой нити происходит поворот упорядоченных областей (мицелл) ) в направлении приложения нагрузки. Эти участки волокна, взаимодействие между которыми осуществляется за счет сравнительно слабых дисперсионных сил, перемещаются по отношению друг к другу в направлении приложения нагрузки. Вытягивание волокна начинается в том месте, где эти участки имеют наиболее благоприятное расположение для такого перемещения (образование шейки). Взаимное перемещение отдельных кристаллических областей передается на соседние кристаллиты посредством бахромы (аморфных областей полимера), соединяющей, как указывалось выше, отдельные упорядоченные области, в результате чего происходит соскальзывание одних кристаллитов относительно соседних. Легко можно представить, что этот процесс соскальзывания сопровождается поворотом отдельных кристаллитов в направлении оси волокна, что проявляется в высокой степени ориентации, фиксируемой на рентгенограмме вытянутого волокна. По данным Брозера, Гольдштейна и Крюгера, соскальзывание кристаллитов в процессе вытягивания волокна приводит по аналогии с деформацией монокристаллов к деформации самой кристаллической решетки, в результате чего происходит упрочение волокна по всему сечению. В этом случае происходит деформация мицеллярной сетки и прекращение процесса соскальзывания. Дальнейшая пластическая деформация полиамидного волокна без его разрыва становится невозможной. [c.435]


    Упомянутые выше исследования относятся главным образом к кристаллизации расплавов полн.меров. При кристаллизации пз растворов получаются частицы с несколько иной морфологией. Как показывают электронномикроскопические исследования, такие частицы представляют собой кристаллы, состояш,ие из тонких слоев или ламелей толщиной около 0,01 мкм (100 А) и линейными размерами до нескольких микрометров. Во время накладывания слоев один на другой образуются спиральные террасы, что подтверждает связь механизма роста кристаллов с винтовыми дислокациями [18]. Такие образования вполне могут быть отнесены к монокристаллам. Пластинчатые кристаллы наблюдались при кристаллизации линейного полиэтилена, производных целлюлозы, полиамидов, полиэфиров и других высокомолекулярных веществ [2]. [c.285]

    Электронографическое исследование сферолитных образований и кристаллитов в смешанном полиамиде (Кл -f ЛГ) проведено Каргиным и Корецкой [500], а Гейл [479] исследовал монокристаллы поли-Б-каиро-амида. [c.361]

    Получение Бадами и Харрисом [483], а также Гейлем [479] монокристаллов полигексаметиленадипинамида, поли-е-капроамида и других полиамидов — особенно интересное доказательство кристаллической природы полиамидов. Бадами и Харрис [483] получили монокристаллы [c.364]

    Кристаллические полимеры. Для некоторых полимеров уда лось установить образование монокристаллов, аналогичны> кристаллам низкомолекулярных соединений. К таким полимерам относятся, например, полиэтилен, полученный методом ион ной полимеризации, полипропилен, полиоксиметилен, полика проамид. Монокристаллы полимеров получают медленным охлаждением очень разбавленных растворов. На рис. 8 показан монокристалл полиэтилена, который образован из нескольких тысяч макромолекулярных цепей. Аналогичные монокристалль были обнаружены и в случае кристаллизации полиамидов и [c.44]


Смотреть страницы где упоминается термин Полиамиды монокристаллы: [c.197]    [c.190]    [c.118]    [c.277]    [c.118]    [c.277]    [c.254]    [c.371]    [c.418]    [c.419]    [c.424]    [c.48]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.429 , c.615 ]




ПОИСК





Смотрите так же термины и статьи:

Монокристалл



© 2024 chem21.info Реклама на сайте