Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морфология полимеров аморфные области

    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]


    Имеющиеся экспериментальные данные, по-видимому, не позволяют однозначно судить о морфологии полимерных цепей в аморфном состоянии. В связи с этим для объяснения надмолекулярной организации аморфных полимеров была предложена кластерная модель 36]. Под кластерами в дальнейшем будем понимать области, в которых имеет место более плотная упаковка молекул или их частей и (или) более упорядоченное их расположение по сравнению с основной, более рыхлой и разупорядоченной массой вещества. Естественно, что плотность кластера должна несколько превышать среднюю плотность полимера. В то же время кластеры являются менее упорядоченными и менее плотно упакованными областями, чем кристаллиты. [c.67]

    Морфология полимеров — это раздел науки о расположении, фдр-ме и структуре полимерных молекул в аморфной и кристаллической областях. [c.76]

    В случае кристаллизующихся полимеров, изложенная выше картина значительно усложняется. Кристаллизация наступает всегда при температуре более высокой, чем Гс, а в ряде случаев и чем Гт [2] и тоже связана с резким ослаблением сегментального движения. Однако кристаллические области в полимерах составляют лишь большую или меньшую часть материала, они сосуществуют с аморфными областями, в которых сегментальное движение достаточно интенсивно. Свойства полимера при этом оказываются сильно зависящими от соотношения между содержанием обеих фаз, от их взаимного влияния и морфологии кристаллических образований. [c.40]

    Примером влияния морфологии полимеров на их химические свойства может служить снижение скорости окисления кристаллизующихся полимеров при нх ориентации и кристаллизации при растяжении. В качестве примера зависимости кинетики реакции от наличия надмолекулярных образований можно привести термоокислительную деструкцию полипропилена. Эта реакция идет преимущественно в аморфных областях. Еслн же сравнивать кинетику реакций в образцах с разной кристаллической структурой, то оказывается, что крупно-сферолитный полипропилен окисляется медленнее, чем мелко-сферолитный. [c.161]

    Таким образом, влияние наполнителя на свойства кристаллических полимеров связано с его влиянием на морфологию и поведение макромолекул в аморфных областях. С этой же точки зрения может быть описано влияние пластификации на механические свойства наполненных кристаллических полимеров. [c.179]

    Существенное влияние на процесс переноса веществ в полимерах оказывают наличие кристаллических областей в полимере и структура аморфных областей, связанных с морфологией кристаллических образований. Показано, что проницаемость частично кристаллизующихся полимеров меньше, чем соответствующих аморфных полимеров [3—5], причем зависимость проницаемости от степени кристалличности носит нелинейный характер. В ряде работ [58—60] рассмотрено влияние структуры аморфных [c.35]


    В атмосфере азота при 100°. Излом на кривой зависимости плотности от количества поглощенного кислорода соответствует точке, в которой кристаллизация почти прекращается. Поскольку плотности аморфных и кристаллических областей в препарате поли-4-метилпентена-1 почти одинаковы, увеличение плотности происходит прямо пропорционально количеству поглощенного кислорода. Данные о взаимосвязи между реакционноспособностью и морфологией полимеров приведены в гл. 1-В. [c.458]

    Физические свойства блочных полимеров зависят частично от их предварительной термической и механической обработки, причем имеются указания на то, что она приводит не только к различиям в морфологии кристаллов, но в какой-то степени также к структурным видоизменениям аморфных областей. Видоизменения такого типа могут возникнуть, например, когда конформации молекул зависят от положения соседних кристаллитов, поэтому необходимо иметь в виду, что термин аморфный не обязательно означает полностью неупорядоченное состояние, а имеет более широкий смысл. [c.406]

    Необычный температурный эффект, наблюдающийся для сажевых композиций полиэтилена, приписывают морфологии полукристаллического полимера. Упорядоченные (кристаллические) области полиэтилена и полипропилена недоступны для кислорода, поэтому реакции окисления происходят в основном в неупорядоченных (аморфных) областях Введение до 10% сажи не сказывается на общей кристалличности полимера, что было подтверждено рентгеновским и дилатометрическим методами. Таким образом, в твердом состоянии около 60% разветвленного полиэтилена устойчиво к действию окисления, а в остающихся 40% аморфного полимера эффективная концентрация сажи примерно в 2 раза выше, чем в расплавленном (полностью неупорядоченном) образце. Иными словами, среднее расстояние, которое полимерный радикал должен пройти до поверхности частицы, в расплаве почти в 2 раза больше, чем в твердом полимере. Хотя несколько процентов сажи не уменьшают общую кристалличность полимера, неупорядоченные области могут концентрироваться вблизи поверхности частиц сажи, где процесс кристаллизации должен быть несколько заторможен. Возможно также, что при пониженных температурах преобладает гетеролитический распад перекисей до инертных продуктов. Однако показанное выше изменение характера зависимости устойчивости от обратной температуры, происходящее вблизи точки плавления, подтверждает основную роль морфологии полимера. [c.482]

    В настоящее время общеизвестно, что одна из основных отличительных черт морфологии полимеров заключается в том, что процесс роста может приводить к различным морфологическим типам кристаллических образований. В одних условиях (кристаллизация из разбавленных растворов) образуются отдельные ламеллярные монокристаллы. Морфология кристаллических образований, возникающих при кристаллизации из расплава, более сложна и разнообразна появляются дефектные разветвленные фибриллы, аморфные области, структурные элементы сферолитов. Кроме того, процесс кристаллизации из расплава может проходить через несколько совершенно различных стадий. В связи с этим, для того чтобы описать механизм кристаллизации полимеров, нужно определить процесс, который играет доминирующую роль в данных условиях. [c.120]

    Таким образом, на ряде примеров установлено, что поверхность наполнителя влияет на морфологию аморфных полимеров в поверхностных слоях. Однако поскольку в настоящее время еще нет возможности связать количественно морфологию с механическими свойствами даже для ненаполненных полимеров, то тем более не установлена связь для композиционных материалов, и исследования в этой области только начаты. [c.52]

    Итак, интерпретация морфологии сферолитов блочных полимеров в настоящее время возможна только в ограниченных пределах и касается главным образом сферолитов, состоящих из пластинчатых фибрилл. Эти последние встречаются наиболее часто у полимеров с высокой кристалличностью, имеющих, к сожалению, много деталей, которые исследователи надеялись изучать с помощью электронной микроскопии, но безуспешно, так как пока еще нельзя ясно различать небольшие области аморфного или неупорядоченного полимера, ограничивающие и таким образом очерчивающие индивидуальные кристаллиты. Тем не менее достигнут значительный прогресс, а многие остававшиеся нерешенными проблемы теперь определены более ясно, чем когда-либо до сих пор. Мы уверены, что дальнейшая работа в этой интересной области исследований приведет к правильному пониманию основных физических и механических свойств полукристаллических полимеров. [c.469]

    Области применения оптической микроскопии. С помощью поляризационной О. м. можно прежде всего найти линейные и угловые размеры структурных элементов, поскольку величина Дга непосредственно связана с толщиной объекта 6, (см. вышеприведенную ф-лу). Помимо этого, метод позволяет определять важные оптич. характеристики (показатели преломления, знак двулучепреломления) как структурных элементов, так и полимерных систем в целом. Установление знака А в элементе надмолекулярной структуры весьма существенно, ибо позволяет определить ориентацию молекулярных цепей в нем. В свою очередь (напр., при появлении положительных, отрицательных и аномальных сферолитов в полиэтилентерефталате), знание ориентации цепей позволяет сделать важные выводы о кинетике и морфологии кристаллизации в разных режимах. Не менее важные выводы на основе изменений знака Ап, сопровождающих деформацию сферолитов в растягиваемых волокнах или пленках, м. б. сделаны о кинетике и морфологии ориентационных процессов. По поводу значимости определения Аи в аморфных полимерах см. Фотоупругость. [c.240]


    От обычных, низкомолекулярных соединений твердые полимеры отличаются физическим состоянием или морфологией. Большинство полимеров проявляют свойства твердых кристаллических веществ и высоковязких жидкостей [10, 11]. На рентгено-и электронограммах полимеров обнаруживаются четкие рефлексы, характерные для пространственно упорядоченных, кристаллических веществ, а также диффузные картины, типичные для жидкостей. Для обозначения упорядоченных и неупорядоченных областей в полимере применяются соответственно термины кристаллический и аморфный. Степень кристалличности разных полимеров весьма различна. Хотя отдельные полнмеры могут быть полностью аморфными или целиком кристаллическими, большинство из них характеризуется частичной кристалличностью, т. е. они являются полукристаллическими. [c.31]

    Существует несколько моделей, объясняющих морфологию цепей в микрофибрилле. Рентгенографические исследования приводят к выводу, что одним из способов надмолекулярной организации цепей, образующих микрофибриллу, является чередование складчатых кристаллов с неупорядоченными аморфными областями, через которые проходит сравнительно небольшое число проходных цепей, соединяющих соседние кристаллы (рис. 24). Такая модель микрофибриллы (модель Хоземанна—Бонара) наиболее широко привлекается для объяснения ряда физических свойств ориентированных полимеров. [c.58]

    Необходимая информация о механическом поведении материала была получена путем анализа мест захвата радикалов. Это позволило в предыдущих разделах сделать вывод о том, что механорадикалы образуются именно в аморфных областях частично кристаллических полимеров. Кроме данной проблемы методом ЭПР были исследованы изменения морфологии образца в процессе его механического изготовления. Касумото, Такаянаги и др. [50—51] изучали пленки ПЭ и ПП путем последовательного удаления аморфной фазы материала травлением азотной кислотой. Затем они проанализировали спектры ЭПР, полученные при облучении 7-лучами обработанных подобным образом пленок. Таким образом они смогли связать октет, полученный для ПП, с радикалами, захваченными дефектами внутри кристаллитов, а спектр из девяти компонент — с радикалами в свернутых аморфных поверхностях. Последние являются особенно эффективными местами захвата радикалов. Указанные авторы также проанализировали влияние закалки, термообработки и холодной вытяжки на мозаично-блочную структуру своих пленок. [c.224]

    Все используемые в технике кристаллизующиеся материалы являются поликристаллитами. Иначе говоря, все они состоят из множества кристаллических областей, каждая из которых граничит с другими кристаллическими или аморфными областями. Поэтому морфология кристаллизующихся материалов носит очень сложный характер. По этой причине основные характеристики их изучают на монокристаллах. Полимеры не являются исключением. Полимерные монокристаллы выращивают из слабоконцентрированных растворов. При температуре кристаллизации способный к кристаллизации полимер высаживается из раствора в виде крошечных пластинок (ламелей), имеющих все характерные черты кристалла, например регулярные грани (видны при электронной микроскопии), и дающих дифракционные картины, присущие монокристаллам. Необходимость применения электронного микроскопа или оптического микроскопа с большим увеличением обусловлена очень малыми размерами полимерных кристаллов максимальные размеры монокристалла ПЭВП составляют несколько мкм, в то время как его толщина очень невелика — порядка 100 А. Монокристаллы других полимеров имеют форму полых пирамид, которые часто закручиваются по спирали, что свидетельствует о существовании винтовых дислокаций. Детальное рассмотрение природы монокристаллов можно найти у Джейла [51, Келлера [6] и Шульца [7]. Наиболее вал<ная и неожиданная особенность монокристаллов состоит в наличии практи- [c.47]

    Реакционная способность атомов хлора сильно зависит от их пространственного расположения, т. е. от микротактичности полимерной цепи [87], и в существенной мере — от морфологии полимера, от доступности атомов С1 [88]. Так, атом хлора при вторичном атоме углерода может вступать в реакцию раньше третичного, если последний окажется малодоступным в результате сте-рических особенностей микро- и макроструктуры материала. Например, атомы хлора, находящиеся в аморфных областях полимера и доступные для молекул реагирующих веществ, легко вступают во все химические реакции. В кристаллических участках с плотной упаковкой цепей и сильным межмолекулярным взаимодействием эти группы малодоступны и практически не участвуют в реакциях. Во всех случаях, когда имеет место перестройка кристаллической структуры и при этом наблюдается повышение реакционной способности функциональных групп, этот факт в первую очередь связан с уненьшением размеров кристаллических областей, увеличением числа аморфных участков и разрыхлением общей структуры. [c.43]

    Таким образом, с помощью примесных молекул, используемых в качестве зондов, для полиэтилена удалось обнаружить различия в плотности аморфных областей в транскристаллических поверхностных слоях, морфология которых практически не зависит от температурного режима плавления и кристаллизации. Было установлено также, что резкое возрастание плотности аморфных областей в граничных слоях полимера не связано с транскристалличностью поверхностного слоя. Методом молекулярного зонда показано также, что температурные режимы плавления и кристаллизации пленок могут оказывать нивелирующее действие на изменение структуры поверхностных слоев таким образом, что энергетические характеристики подложки практически не будут проявляться. Важен лишь сам факт существования этой поверхности. Кроме того, при рассмотрении процессов, протекающих в граничных слоях полимеров, следует обращать внимание на возможность сочетания нескольких факторов, влияющих на формирование структуры. Так, плавление с неполным разрушением исходных структур на высокоэнергетических подложках может привести к образованию напряженных поверхностных структур, к существенному увеличению плотности аморфных областей в этих структурах. При отделении такой полимерной пленки от подложки напряженные структуры испытывают релаксацию, в ряде случаев проходящую через стадию аморфизации с последующей рекристаллизацией. [c.80]

    Однако если исходить из морфологии полимеров, закристаллизованных в нормальных условиях, следует учитывать существенное влияние, которое может оказывать энтропия на механизм частичного плавления таких кристаллических систем. Так как кристаллиты обладают незначительными размерами вдоль цепи, то каждая цепная молекула достаточно большого молекулярного веса состоит из ряда последовательностей звеньев, входящих в решетку кристаллита или в плохо упорядоченные (дефектные) области. Аморфные области между кристаллитами, состоящие из незакристаллизовавшихся участков цепи и называемые автором данной работы граничным слоем, имеют термодинамические свойства, отличные от свойств переохлажденного расплава, так как концы большинства незакристаллизованных участков цепи входят в кристаллиты. Обусловленное этим фактом изменение конфигурационной энтропии следует учитывать при рассмотрении процесса плавления. [c.11]

    В случае полимеров предложенная выше точка зрения приводит к тому, что рост сферолитов связан прежде всего с конкурирующими процессами. Стереорегулярность молекул среды или высокий молекулярный вес в большинстве случаев ведут к легквй кристаллизации, тогда как молекулы с недостаточной стереорегулярностью, с очень низким молекулярным весом или сильно изогнутые в основном будут отталкиваться в сторону, как примеси. Вопрос о том, могут или не могут эти примеси вообще кристаллизоваться, является второстепенным они выполняют важную функцию установления режима сферолитной кристаллизации уже только потому, что несколько отличаются по поведению от своих соседей, способных кристаллизоваться более легко. Такие более тонкие детали, как относительная доля молекул, не участвующих в кристаллизации, степень кристалличности, достигаемая расплавом между волокнами при продолжительной кристаллизации, и огрубление текстуры, зависят от состава индивидуального полимера и от температуры кристаллизации. Вариации, которые могут получаться при изменении этих параметров, очевидны из предыдущего рассмотрения. О поведении молекул известно очень мало, но что касается описания кристалличности и морфологии на уровне кристаллических фибрилл и аморфных областей, то здесь возможны качественные оценки поведения, наблюдаемого на опыте у широкого ряда полимеров. [c.466]

    Чтобы выяснить влияние упорядоченности на скорость набухания, был исследован переосажденный ПВХ после его отжига при 110°С в течение 4 ч (кривая 4 на рис. П.27). Для сравнения исходный образец отжигали в таких же условиях (кривая 2 на рис. 11.27). После отжига переосажденного ПВХ Гр увеличилась на 30° и стала близкой к Гр исходного образца (Гр переосажденного образца после отжига равна 70°С Гр исходного образца до и после отжига равна 70°С), Г увеличилась на 20°С. Морфология образца при отжиге не изменялась, что контролировали путем измерения пикнометрической плотности в метаноле и микроскопически. Из рентгенограмм отожженного после переосаждения образца было найдено, что степень кристалличности стала равной 9,5%-Резкое увеличение скорости набухания, которое наблюдалось для переосажденного ПВХ, следует объяснить в основном очень значительным изменением морфологии зерен, увеличением удельной поверхности полимера и разрушением оболочки, что, как и в случае размалывания, но значительно в большей мере увеличивает площадь контакта полимера с пластификатором. Кроме того, скорость набухания увеличилась, возможно, благодаря изменениям упорядоченности надмолекулярных структур в аморфных областях. [c.111]

    Ламели отделены друг от друга аморфными областями, составленными из атактических блоков или других некристаллических веществ в полимере с кристалличностью 50%. Вследствие этого исходные пленки и волокна остаются плотными, но проявляют другие механические свойства (рис. 8.1) и большую эластичность (рис. 8.2), чем пленки и волокна, полученные из ненапряженного и неотожженного ПП. Морфология ориентированных ламелей исходных пленок или волокон схематически показана на рис. 8.3 [8—10]. Плотные исходные матрицы подвергаются вытяжке (50—300%) при температуре выше начальной температуры отжига, но ниже Тпл. о приводит к деформации аморфных областей между ламелями в фибриллы и формированию пористой сетки с продольными порами в направлении растяжения [c.290]

    Возможность проявления гибкости цепи в аморфных областях полимеров неизбежно уменьшается с пони жением температуры, увеличением энергии вторичных связей или в тех случаях, когда строение макромолекул препятствует проявлению гибкости Однако часто даже в этих случаях приложение внешней силы может привести к сдвигу смежных сегментов без нарушения целостности самой цепи. Этот перенос молекулярной цепи может быть усилен до такой степени, что возникнет осевая продольная текстура, образованная цепными молекулами, причем предельным случаем является анизотропная молекулярная кристаллизация (см. Морфология полимеров , П. Джейл). Возникновение обусловленной деформацией гомогенной анизотропии, которая вызывает увеличение жестк<)сти полимера благодаря кристаллизации, свойственно твердым ролимерам. [c.12]

    Так как при перемещении цепных молекул неизбежно возникают сильные гидродинамические сопротивления, их растворы и расплавы обладают малой текучестью Если же учесть, что в действительности эти сложные молекулы не распрямлены, то не удивительно, что при понижении температуры они склонны к переохлаждению. Переохлаждение облегчается, когда энергия вторичных связей низка, молекулы нерегулярны или очень сложны по химическому строению . Несмотря на это, многие твердые полимеры можно получить или найти в природе в виде высококристаллических или даже монокристаллических материалов. Однако и природные, и, в особенности, синтетические полимерные соединения благодаря сильной тенденции к переохлаждению обычно обладают или аморфной структурой, или структурой, состоящей из областей, закристаллизовавшихся в различной степени. Поэтому полимеры представляют собой частично кристаллические или полукристаллические твердые тела (см. Морфология полимеров , П. Джейл). [c.13]

    Обобщая литературные данные, можно с достаточной степенью уверенности говорить, что изучение переноса газов и паров в кристаллических полимерах не позволило установить зависимость между степенью кристалличности и диффузионными параметрами матриц в явном виде. Для интерпретации диффузионных свойстй таких систем приходится привлекать представления о структурно-морфологических особенностях строения полимерных кристаллов, сферолитов, что не удается описать количественно. Такое положение, как нам кажется, вызвано двумя обстоятельствами. Во-первых, как уже отмечалось, больщинство работ посвящено высококристаллическим полимерам фкр>0,6. Малый объем аморфной фазы, сложная морфология, особенно в образцах, подвергнутых термическому отжигу, показывают, что в таких полимерах диффузионные свойства аморфных областей не идентичны обычному аморфному состоянию полимера и зависят от степени кристалличности образца. Во-вторых, в системах газообразные вещества — полимер доступность кристаллических образований проникновению молекул диффузанта достаточно высокая, что осложняет интерпретацию опытных данных и требует иного подхода уже на стадии обработки экспериментальных данных по кинетическим кривым проницаемости и сорбции. Значительно большей информативностью обладают органические растворители, размеры молекул которых велики, чтобы пренебречь их проникновением в кристаллиты полимерной матрицы. [c.170]

    В настоящее время, по-видимому, не существует какого-либо простого соотношения между плотностью исходного полимера и значениями РиО для паров, заметно сорбирующихся полимером. Изменения плотности и морфологии полимера в отсутствие паров обусловлены структурными различиями, такими, как разветвление цепи, способ синтеза полимера, температура и давление при кристаллизации. Растворитель несомненно разрушает начальные локальные конформации в кристаллитах и в аморфных областях. [c.298]

    В то время как исследованию химической активности целлюлозы было посвящено большое число работ, для синтетических полимеров этот вопрос остается почти не исследованным. Такое положение, несомненно, связано с трудностью подбора подходящего растворителя, который бы действовал селективно только на аморфные области исследуемого полимера. В гл. 2 уже отмечалось, что Палмер и сотр. обнаружили, что дымящая азотная кислота при повышенных температурах действует достаточно избирательно в рассматриваемом отношении на полиэтилен. Келлер использовал этот реагент для исследования морфологии полиэтилена. Было обнаружено, что атака направлена на аморфные области, расположенные между ламеллями кристаллитов, причем величина складок оказалась определяющим параметром. А именно было установлено, что скорость меньше в образцах, складки которых имеют большую величину. Это понятно, если учесть, что в данном случае снижается доля аморфной фракции. [c.193]

    Путем сравнения числа радикалов, приходящихся на единицу площади новой поверхности, с общим числом цепей в единице площади было установлено, что при низкой температуре деструкция идет таким образом, что разрушается минимальное число связей [39, 185, 188, 581 ]. Это было показано как для кристаллических, так и для аморфных полимеров. В первом случае разрушение протекает по аморфным областям между сферолитами и кристаллическими ламелями [581]. Морфология этих областей зависит от степени вытяжки, температуры и других факторов. Результаты, полученные на полиуретане, показывают, что концепция разрушения, предусматривающая разрыв минимума связей, не требует использования представления о структуре полимера в виде сосуществующих кристаллических и аморфных областей [188]. Энергия, необходимая для разрыва связей при разрушении полимера, составляет только небольшую часть (43 эрг/см ) полной энергии, необходимой для образования новой поверхности (10 эрг/см ), поскольку основная часть работы диссипирует в образце [188]. [c.297]

    Чтобы характеризовать параметры полимера, которые влияют на его проницаемость, могут привлекаться различные физические методы. С их помощью изучают преимущественно морфологию мембран. Два структурных параметра, которые влияют на проницаемость очень сильно, — это температура стеклования Тст и кристалличность. Как уже было отмечено в гл. II, способность к кристаллизации обнаруживают только полимеры с регулярной конфигурацией цепей. При исследовании кристаллизации полимеров особенно важны два фактора степень кристалличности, а также размер и форма кристаллитов. Степень кристалличности определяет долю кристаллического материала в частично-кристаллическом полимере (рис. 1У-25). В этом случае кристаллические области диспергированы в аморфной (непрерывной) фазе. Поскольку транспорт протекает преимущественно через аморфные области, очень ва1Жно знать степень кристалличности [c.195]

    Рентгеновская дифракция также дает полезную информацию о морфологии полимера. Изучение дифракции в широких углах особенно полезно для получения информации о размере и форме кристаллитов, а также о степени кристалличности твердых полимеров. Принципиальная схема метода дана на рис. 1У-31, тогда как рис. 1У-32 показывает зависимость интенсивности от угла рассеяния. Как видно из рис. 1У-31, рентгеновский луч направляется на образец полимера, и измеряется интенсивность рассеяния как функция дифракционного угла 29. Наличие кристаллических областей обнаруживается по острым пикам на дифрактограмме, тогда как аморфные области дают более размытые пики. Степень кристаличности определяют, измеряя площадь под каждым из пиков. Однако часто бывает трудно различить рассеяние, обусловленное кристаллическими и аморфными областями. Поэтому степень кристалличности иногда не удается определить с высокой точностью. Еще одну проблему представляет наличие очень мелких кристаллитов, поскольку они характеризуются эффектами рассеяния, свойственными обычно аморфному материалу. В то же время уширение пиков рассеяния, характерное для мелких кристаллитов, может быть использовано для оценки их размеров. [c.201]

    Сканирующая электроЕ1ная микроскопия (СЭМ) позволяет получить изображение микроскопической поверхностной области образца, причем воз-можно получение трехмерного изображения. СЭМ дает увеличение 20— 100 000 раз (чаще всего 20 000—50 000). Разрешающая способность СЭЛ1 несколько меньше ПЭ.М и составляет С 10 нм. Поскольку для СЭЛ не требуется специально готовить образцы, этот метод находит все более широкое применение для изучения морфологии надмолекулярных образований кристаллических и аморфных полимеров. [c.86]

    Рассмотрим теперь структуры, возникающие в ориентированных кристалло-аморфных полимерах. Наиболее характерной из них является структура с морфологией типа шиш-кебаб, впервые обнаруженная при кристаллизации полимеров в текущем растворе, а затем наблюдавшаяся при кристаллизацип в самых разных условиях с обязательным, однако, условием наличия факторов, вызывающих одноосную молекулярную ориентацию полимерных цепей. Эта структура, четко обнаруживаемая с помощью электронной микроскопии (рис. XVI. 1), характеризуется наличием центральной области — фибриллярной нити, на которой имеются своеобразные наросты. Сначала думали, что центральная нить представляет собой однородное образование, фибриллярный зародыш типа КВЦ, но затем Келлер обнаружил, что она сама может иметь структуру типа шиш-кебаб и состоять из более тонкой нити КВЦ, окру- [c.368]

    Второе, неравновесное приближение учитывает ие рассматриваемые в статистико-механических теориях факторы структурной релаксации. При этом вопрос о формировании дискретных и сетчатых структур в растворах и о температурно-концентрацион-ных областях их длительного существования решается в значительной мере в зависимости от того, каким способом достигается соответствующая точка фазовой диаграммы. Из-за больших размеров макромолекул и соответственно огромных времен релаксации даже в области полной совместимости могут существовать равновесные и неравновесные надмолекулярные структуры, как дискретные, так и типа аморфных сеток, что было экспериментально доказано в работах [30, 31], Выделение макроскопической фазы полимера происходило с сохранением надмолекулярной морфологии структур, уже возникших непосредственно в растворах и расплавах полимеров. Вопрос о фазовод характере сеток, получающихся при разделении системы на две фазы, решается рассмотре- [c.64]

    Как видно из приведенной серии морфологических картин, имеется возможность разделения областей преимущественно кристаллического или аморфного компонентов смеси. Как и в случае смеси полиамида с полистиролом, по морфологии неориентированной смеси ПЭНП с ПС (рис. V. 14, а) нельзя достаточно четко судить о распределении компонентов. При ориентационной вытяжке этой смеси четко становятся видны области преимущественно кристаллического или аморфного компонента. Введение аморфного полимера, как видно из рисунка, оказывает существенное влияние на ламелярную слоевую структуру, характерную для ориентированного состояния чистого полиэтилена. С увеличением содержания аморфного компонента смеси происходит сглаживЗ)Ние оптиче- [c.216]

    Каргин, Слонимский и Китайгородский полагали, что пачки существуют не только в стеклообразном и высокоэластическом, но и в вязкотекучем состоянии. Считалось, что пачки в известной степени аналогичны областям ближнего порядка в жидкостях и имеют флуктуацион-ный характер. Прн этом подчеркивалось, что длительность жизни пачки полимерных цепей очень велика, а в стеклообразном состоянии пачка остается практически неизменной. Выдвинув пачечную модель структуры аморфного полимера, Каргин, Слонимский и Китайгородский пересмотрели представления о морфологии цепей в кристаллических полимерах. В 1957 г. они утверждали [26] Широко распространенная в настоящее время картина строения кристаллического полимера в виде системы небольших упорядоченных областей, объединенных общими цепями, проходящими последовательно через области упорядоченно уложенных и спутанных участков цепей, не может быть справедливой в той форме, как она обычно излагается. Это вытекает хотя бы из чисто геометрических соображений имея в виду достаточно хорощо известные размеры областей порядка и расстояния между ними, невозможно построить модель полимера, в которой цепи выходили бы из области порядка, перепутывались и затем опять образовывали области порядка. Несомненно, что одна и та же цепь проходит через несколько областей порядка и беспорядка. Однако при этом цепь не выходит за пределы пачки и по всей своей длине в основном сохраняет своих соседей . [c.64]

    На скорость диффузии кислорода в полукристаллические полимеры влияет морфология и соотношение поверхность/объем, а также другие факторы. Изменение скорости окисления полиэтилена с увеличением толщины образца показано на рис. XIII-3. Основными продуктами окисления являются двуокись углерода, вода и окисленный полимер. В процессе окисления внешняя поверхность образца полимера окисляется в большей степени, чем внутренние области полимера, так как количество поглощенного кислорода зависит от скорости реакции и относительных скоростей диффузии кислорода и продуктов окисления. По-видимому, более плотные кристаллические области в препаратах полиэтилена и полипропилена недоступны для кислорода, так как общее количество поглощенного кислорода приблизительно пропорционально содержанию аморфной фракции в этих полимерах [6]. Например, высококристаллический полиэтилен, полученный кристаллизацией из разбавленного рас- [c.456]

    Физическую структуру различных типов кристаллических или час-гичнокристадличеоких сополимеров лучше всего удается охарактеризовать в тех случаях, когда известны макрококформация молекулярной цепи, а также структура и морфология кристаллических областей. Возможны три предельных варианта макрококформации цепи аморфного полимера, складчатые цепи и вытянутые цепи (разд. 3.2, рис. 3.5, [c.359]

    В области физики и механики полимеров создан ряд оригинальных методов изучения физических свойств разбавленных растворов полимеров и полимеров в твердом состоянии. Установлены важные закономерности зависимости динамических механических свойств от структуры полимеров, найдены пути прогнозирования эксплуатационной годности некоторых полимерных изделий. Получили существенное развитие работы по струк-турообразованпю в полимерах, по морфологии надмолекулярной организации полимеров в аморфном и кристаллическом состоянии. На основе этих фундаментальных работ получены новые методы физической модификации полимеров. [c.4]

    Уменьшение плотности упаковки макромолекул в расплаве при повышении ММ до Мег свидетельствует о возникновении специфических дефектов упаковки, в результате внутримолекулярного конформационного перехода. Такими дефектами упаковки могут быть либо петли, образовавшиеся в результате перехода фрагментов макромолекулы в складчатую конформацию, или же межмолекуляр-ные зацепления, возникновение которых обусловлено взаимным проникновением макромолекулярных клубков. Второе предположение, по-видимому, является менее вероятным ввиду того, что образование сетки зацеплений обычно происходит при существенно более высоких значениях ММ (более подробно об этом см. гл. IV). В то же время, в пользу модели ССМ говорят результаты исследования морфологии полимерных кристаллов, полученных из расплава, согласно которым в этой области ММ возникает переход от кристаллизации с выпрямленными цепями к кристаллизации, протекающей по механизму складывания цепей. Наконец, представление о том, что упорядоченность аморфных полимеров имеет скорее внутримолекулярное (модель ССМ), чем межмолекулярное (модель ПСК) происхождепие, позволило количественно описать зависимость степени упорядоченности, выражаемой отношением удельных объемрв полимера в кристаллическом и аморфном состояниях, от отношения толщины макромолекулы к параметру ее равновесной жесткости. [c.50]


Смотреть страницы где упоминается термин Морфология полимеров аморфные области: [c.63]    [c.296]    [c.293]    [c.33]    [c.242]    [c.21]    [c.46]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.76 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Аморфные полимеры

Морфология

Морфология полимеров



© 2025 chem21.info Реклама на сайте