Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота испарения галогенов

    Значения температуры кипения и теплоты испарения жидких галогеноводородов, приведенные в табл. 26.3, свидетельствуют о том, что наименьшая тенденция к ассоциации имеет место у хлористого водорода. Энергия связи в ряду НР — Н1 уменьшается, что обусловлено резким возрастанием числа электронов в атомах галогенов в ряду Р — I, а также уменьшением различия в энергии уровней и подуровней по мере увеличения числа электронных слоев. В результате этого уменьшается степень перекрывания орбиталей водорода и галогена и возрастает межатомное расстояние. Моменты диполей галогеноводородов в связи с уменьшением тенденции к разделению зарядов и увеличением межатомных расстояний в той же последовательности существенно уменьшаются. [c.317]


Рис. 9. Зависимость между экспериментальными значениями скрытой теплоты испарения и температурой плавления для инертных газов и галогенов. О галогены инертные газы. Рис. 9. <a href="/info/25969">Зависимость между</a> <a href="/info/363121">экспериментальными значениями</a> <a href="/info/301240">скрытой теплоты испарения</a> и <a href="/info/6380">температурой плавления</a> для <a href="/info/1596">инертных газов</a> и галогенов. О галогены инертные газы.
Рис. 15.18. Влияние водородной связи на температуру плавления, температуру кипения и теплоту испарения ДЯ ,,п некоторых веществ. Сравните данные для благородных газов и соединений водорода с элементами группы углерода с данными для соединений водорода с элементами групп азота, кислорода и галогенами. В каких веществах больше всего проявляется влияние водородных связей Рис. 15.18. <a href="/info/190336">Влияние водородной связи</a> на <a href="/info/6380">температуру плавления</a>, <a href="/info/6377">температуру кипения</a> и <a href="/info/3540">теплоту испарения</a> ДЯ ,,п <a href="/info/500753">некоторых веществ</a>. Сравните данные для <a href="/info/1595">благородных газов</a> и <a href="/info/16099">соединений водорода</a> с <a href="/info/1605422">элементами группы углерода</a> с данными для <a href="/info/16099">соединений водорода</a> с <a href="/info/463568">элементами групп азота</a>, кислорода и галогенами. В <a href="/info/1544399">каких веществах</a> больше всего проявляется <a href="/info/98128">влияние водородных</a> связей
    Теплота атомизации и первый потенциал ионизации для серебра составляют 66 и 174 ккал/моль соответственно. В задаче 12 гл. I приведены значения энергий связи для галогенов. Теплота испарения брома составляет 8 ккал/моль, а теплота сублимации иода — 15 ккал/моль. Вычислите энергии решетки для галогенидов серебра, исходя из их стандартных теплот образования [c.99]

    Эти же закономерные сдвиги подтверждаются целым рядом важнейших свойств соединений галогенов. Так, изменяются с возрастанием атомного номера галогенов многие основные параметры и свойства гидридов (рис. 25, б), например межатомное расстояние галоген—водород, теплота испарения, дипольный момент газовой молекулы и т. д. Аналогичные отклонения с возрастанием атомного номера галогена показывают теплоты образования и температуры кипения галогенидов кремния и германия. [c.93]

    При определении энергии решеток бромидов и иодидов принципиально вид выражения (5) не меняется. Поскольку, однако, в цикле Борна—Габера добавляется стадия испарения галогенов, постольку в выражении (5) появляется еще одна энергетическая характеристика — теплота этого процесса. Эта величина прибавляется к абсолютной величине энергии кристаллической решетки, так как обе величины в цикле Борна — Габера входят с одним знаком (это означает, что общие энергетические затраты для получения газообразных ионов растут). [c.74]


    Для водорода характерно образование иона НдО в воде, а галогены образуют соединения с полярной ковалентной связью, а которых их окислительное число бывает +1 и выше (за исключением фтора). Водород имеет меньшее сродство к электрону и меньшую электроотрицательность по сравнению с галогенами. В этом отношении он близок к углероду,связь С—Показывается менее полярной, чем связи углерода е другими элементами. У атомов Н и С валентные электронные уровни заполнены наполовину. Однако все же водород имеет наибольшее сходство с галогенами, в пользу чего говорят и многие результаты сравнительных расчетов (гл. II, 6). Так, М. X. Карапетьянц [10] показал, что теплоты испарения водорода и галогенов при сопоставлении их с теплотами испарения благородных газов ложатся на одну прямую. Тоже получаются прямые при сопоставлении энергии кристаллических решеток фторидов и гидрилов щелочных металлов, при сопосталении потенциалов ионизации атомов галогенов и водорода и энергии связи С—Э (где Э—Н, F, С1, Вг, I) и т. д. [c.312]

    Величина А х равна работе, которая должна быть затрачена для удаления электрона от иона галогена эта величина известна под названием сродства электрона к атому. Ее можно онределить измерением равновесных концентраций М, X и X, например с помощью масс-спектрометра, в струе пара соли, испускаемой накаленной вольфрамовой нитью ]24]. В четвертой стадии конденсируется пар металла Ьш — теплота сублимации металла, определяемая по изменению давления нара в зависимости от телшературы (гл. XV). На пятой стадии происходит соединение двух атомов галогена в газовой фазе с образованием, одной молекулы О — выражает энергию диссоциации молекулы (гл. X и XX). В шестой стадии газообразный галоген конденсируется, переходя в кидкое или твердое состояние Lx, — теплота испарения или сублимации на 1 г-моль. Последней стадией является соедпнение твердого металла и кристаллического (или жидкого) галогена в кристаллическую соль. представляет теплоту, выделяющуюся при этой химической реакции. Из перечисленных семи стадий складывается замкнутый круговой процесс, к которому можно применить уравпение, выведенное в гл. VI  [c.495]

    Разумеется, можно ожидать, что силы притяжения на таких больших расстояниях очень слабы, поэтому температуры кипения и теплоты испарения инертных газов такие низкие. Эти две характеристики—расстояние, на котором происходит взаимодействие, и энергия взаимодействия — приведены в табл. 8.2 вместе с соответствующими данными для молекул галогенов того же периода. В каждом периоде наличие наполовину заполненной валентной орбитали атома галогена допускает тесное сближение атомов и высокую энергию связи, в то время как полностью заполненные валентные орбитали инертного газа допускают только сближение внешних орбиталей и очень низкие энергии связи. Из-за больших отличий в энергиях, проявляющихся в ряде свойств, такие взаимодействия получили различные названия. Взаимодействия с участием валентных орбиталей называют химическими связями. Связь с участием внешних орбиталей называется .связью Ван-дер-Ваальса (по имени голландского ученого, изучавшего этот тип взаимодействия). Размер атома, который можно считать равным половине межъядерного расстояния в твердом теле, называется вандерваальсовым радиусом. [c.247]

    К тому же выводу можно прийти, сравнивая энергии кристаллических решеток фторидов и гидридов щелочных металлов (рассчитанные М. X. Карапетьянцем), теплоты испарения водорода и галогенов с теплотами испарения благородных газов, температуры кипения и теплоты испарения водорода и галоге-новодородов и др. [c.92]

    Алюминий энергично взаимодействует с галогенами, образуя А1Гз. Фторид алюминия — малорастворимое и тугоплавкое вещество, остальные галогениды алюминия хорошо растворимы не только в воде, но и во многих органических растворителях, легкоплавки и летучи. В расплавленном состоянии они неэЛектро-проводны. Они дымят на воздухе вследствие испарения, поглощения паром влаги и образования твердых кристаллогидратов. Растворение галогенидов алюминия в воде сопровождается выделением большого количества теплоты если кусок А1Вгз бросить в воду, то происходит сильный взрыв (ДЯ° растворения [c.341]

    Металлоидная активность галогена (в растворе) пропорциональна энергии, выделяющейся при переходе его атома от обычного состояния к гидратированному иону Г. Энергия эта равна алгебраической сумме половины энергии диссоциации молекулы Гг, сродства атома Г к электрону и энергии гидратации нона Г-. Если галоген при обычных условиях не газообразен, то должна быть учтена также теплота его испарения (прнблнзительно 17 кДж/моль для Вг и 30 кДж/моль для I). Такая суммарная Энергия нмеет следующие значения (кДж/ы.оль атомов)  [c.202]


    В работах Бакулиной и Ионова [83, 84] методом поверхностной ионизации были определены разности в величинах сродства к электрону атомов всех галогенов (см. стр. 244). Однако абсолютное значение величины Л (Вг) не определялось, а было принято по работе [3330]. Бэйли [623] на основании масс-спектрометрического измерения концентрации ионов при испарении КВг нашел Л (Вг) = —80,9+ 1,5 ккал г-атом -. Кубиччотти [1229] получил Л(Вг) = — 79,5+ ккал г-атом в результате расчета по циклу Борна—Габерана основании известных в литературе теплот образования галоидных соединений щелочных металлов, одноатомных галогенов и щелочных металлов в газообразном состоянии и энергии кристаллической решетки соответствующих солей, вычисленной теоретически в работе [1229]" . [c.275]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]


Смотреть страницы где упоминается термин Теплота испарения галогенов: [c.306]    [c.390]    [c.353]    [c.187]    [c.45]    [c.26]    [c.306]    [c.306]    [c.306]    [c.341]    [c.102]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.186 , c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Теплота испарения



© 2025 chem21.info Реклама на сайте